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Abstract
Large Language Models (LLMs) have presented impressive
performance across several transformative tasks. However, it
is non-trivial to efficiently utilize large-scale cluster resources
to develop LLMs, often riddled with numerous challenges
such as frequent hardware failures, intricate parallelization
strategies, and imbalanced resource utilization. In this paper,
we present an in-depth characterization study of a six-month
LLM development workload trace collected from our GPU
datacenter Acme. Specifically, we investigate discrepancies
between LLMs and prior task-specific Deep Learning (DL)
workloads, explore resource utilization patterns, and identify
the impact of various job failures. Our analysis summarizes
hurdles we encountered and uncovers potential opportuni-
ties to optimize systems tailored for LLMs. Furthermore, we
introduce our system efforts: (1) fault-tolerant pretraining,
which enhances fault tolerance through LLM-involved failure
diagnosis and automatic recovery. (2) decoupled scheduling
for evaluation, which achieves timely performance feedback
via trial decomposition and scheduling optimization.

1 Introduction
Over the years, advances in LLMs have attracted significant
attention from both academia and industry owing to their
impressive performance and capabilities, such as ChatGPT
[2] and GitHub Copilot [3]. However, due to their immense
model sizes and extensive data demands, training such models
necessitates a substantial computational infrastructure with
thousands of accelerators [27, 69]. Hence, it is a common
practice for tech companies and cloud providers to build large-
scale GPU clusters to facilitate LLM development, especially
after the popularity of ChatGPT. Nevertheless, it is non-trivial
to perform efficient LLM development on such high-cost
infrastructure. Developers often confront numerous issues
and challenges, including frequent hardware failures [65, 97],
intricate parallelization strategies [69, 114], unstable training
progress [1, 111], long queuing delay [105], etc.

Developing LLMs is closely intertwined with the support
of GPU clusters in various aspects. A thorough analysis of
cluster workloads is essential for comprehending challenges
and uncovering opportunities in designing systems tailored
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for LLMs. However, many conclusions and implications from
existing DL workloads analysis works [41, 47, 98], conducted
before the rise of LLMs, are not applicable to LLM develop-
ment. This is primarily due to the divergent characteristics
and requirements of LLMs:
(1) Paradigm Transition. DL workloads generally follow
a task-specific paradigm that trains the model on domain-
specific data to tackle a particular task (e.g., translation [18]).
In contrast, LLMs follow an emerging paradigm that performs
self-supervised training on broad data to generate a foundation
model [19] and further adapts to a wide range of downstream
tasks. This shift signifies a substantial divergence in the model
development pipeline (e.g., pretraining [86], alignment [40])
and workload characteristics from prior DL workloads (§2.1).
(2) Tailored Software Stack. To accommodate the enormous
model size of LLMs, a series of systems implement advanced
techniques to optimize the execution of LLMs. For instance,
Deepspeed [81], Megatron [69] and Alpa [114] accelerate
the training via hybrid parallelism or state-sharding optimizer.
As for model serving, Orca [105] and vLLM [52] improve
throughput via iteration scheduling or memory management.
(3) Unified Architecture. Prior DL workloads usually employ
various model architectures (e.g., CNN [55], RNN [18]) to ad-
dress diverse tasks. In contrast, LLMs commonly embrace the
Transformer [94] architecture, like BERT [31], GPT-3 [20],
LLaMA [92] and PaLM [27]. The architectural homogeneity
suggests a high level of uniformity in the LLM development
pipeline and similarity across different datacenters.

To bridge this gap, we present an in-depth study of our
operational experiences in the datacenter Acme of Shanghai
AI Laboratory. It houses two distinct clusters, Seren and
Kalos, dedicated to LLM development and equipped with
4,704 A100 GPUs in total. Our analysis draws upon traces
collected over a six-month period from March to August 2023,
encompassing scheduler logs, infrastructure monitoring data,
failure logs, and fine-grained profiling data. Our key findings
and identified challenges can be summarized as follows:
• Shorter Job Duration and Unfair Queuing Delay. In
contrast to the common stereotype that LLM workloads are
usually long-term, the workloads in our datacenter exhibit
2.7∼12.8× shorter average job duration compared to the
DL workloads in previous traces [41, 47, 98]. This can be



attributed to the presence of numerous short-term tasks such
as evaluation. In terms of job queuing delay, our findings
also diverge from previous DL traces that larger-scale jobs
experience longer wait times. We observe that evaluation jobs,
despite being short-term and small-scale, have the longest
queuing delay. This discrepancy stems from reserving the
majority of resources for pretraining jobs to minimize their
queuing delays. Evaluation jobs are scheduled with a lower
priority, utilizing the limited spare resources.
• Imbalanced Resource Usage. The imbalance is manifested
in two aspects. Firstly, in terms of workload distribution, pre-
training jobs only account for 3.2% of the total job count but
consume 94.0% of the whole compute resource (i.e., GPU
time) in Kalos. Conversely, evaluation jobs, despite constitut-
ing 92.9% of all jobs, only utilize a meager 0.8% of resources.
Secondly, when looking at infrastructure utilization, we find
that associated resources including CPU, host memory, and
network, are frequently underutilized. In contrast, the GPU, as
the primary resource, shows high utilization rates. Both GPU
memory and GPU utilization exhibit substantially higher me-
dian values at 75% (60GB) and 99% respectively in Kalos,
as opposed to the 10% and 4% observed in PAI [98]. These
observations corroborate that LLMs are computationally and
memory intensive. It also implies that GPU-sharing-based
techniques [42, 99, 100, 107] may not be suitable for LLMs.
• Long GPU Idle Time in Evaluation Workload. Our
profiling of evaluation workloads reveals substantial under-
utilization of GPU resources at various stages. For example,
the evaluation job on HumanEval consumes 29.5% of its time
for model loading and data preprocessing, and an additional
19.0% is spent conducting synthesized program correctness
tests. As a result, only half of the time is dedicated to GPU
inference, leading to long queuing delays in evaluation trials.
• Frequent Job Failures. We find various errors primarily
occur at the beginning of LLM workloads, leading to fast
job termination. However, infrastructure failures, which are
common in long-term pretraining jobs, significantly impede
training efficiency. Therefore, prompt diagnosis and recovery
from these failures are crucial to enhance training efficiency.

Based on our characterization study, we identify several
challenges encountered during the LLM development, such
as unstable training progress, remote storage bottleneck and
delayed feedback on model performance. To tackle these is-
sues, we consolidate the insights gained from our operational
experience and build two systems that are integrated into our
LLM framework to improve development robustness and effi-
ciency. Firstly, to mitigate the frequent failure problem, we
establish a system to achieve fault-tolerant pretraining. It
incorporates three key designs: (1) achieving frequent model
saving through asynchronous checkpointing, (2) identifying
the root causes of various failures through a combination of
heuristic rules and LLM, (3) employing a holistic detection
toolkit to pinpoint fault nodes and automatically restart train-
ing from properly saved checkpoint. It accelerates checkpoint-
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Figure 1: Overview of the LLM development pipeline.

ing by 3.6∼58.7× and significantly reduces manual interven-
tion. Secondly, we develop a system that performs decoupled
scheduling for evaluation to provide developers with timely
feedback on model quality. It not only resolves the remote
model loading contention issue via decoupled model retrieval
but also minimizes GPU idle time via decoupling the metric
computation process. It further leverages the prior knowl-
edge and flexibility of datasets to balance workload across all
GPUs. Our experiment shows that it can reduce the evaluation
makespan by up to 1.8×.

We believe the observations and insights derived from our
datacenter do not stand in isolation. Our traces are publicly
available at https://github.com/InternLM/AcmeTrace.
We also release our system code and models (Appendix C).
We hope these resources and lessons can benefit researchers in
optimizing LLM systems as well as GPU cluster management.

2 Background
2.1 LLM Development Pipeline
Distinguished from task-specific DL models, LLMs follow an
emerging paradigm that performs self-supervised training on
broad data and further adapts to a wide range of downstream
tasks [19]. The development of LLMs necessitates the use of
extensive computational infrastructure due to their substantial
model size (comprising billions of parameters) and the vast
amount of training data involved. Figure 1 depicts the com-
prehensive LLM development pipeline, encompassing five
distinct stages (blue blocks) that span from scratch to service
(follow blue arrows). The grey circular arrow indicates that
the pretraining stage enables periodical alignment and evalua-
tion to assess intermediate models and adjust configuration
on the fly. We explain each stage as follows:
Data Preparation. The initial stage involves gathering and
preprocessing the training data, which can be categorized
into two parts: (1) pretraining data, consisting of extensive
unlabeled corpora obtained from public or private sources
and curated through processes like detoxification and dedu-

https://github.com/InternLM/AcmeTrace


Cluster #CPUs #GPUs Mem(GB) Network #Nodes

Seren
128 8

1,024 1×200Gb/s 286
Kalos 2,048 5×200Gb/s 302

Table 1: Summary of per-node specification and cluster scale
for two independent LLM clusters in Acme.

plication; (2) alignment data, comprising a smaller set of
high-quality labeled corpora used to align the model with spe-
cific tasks. This data is typically acquired through expensive
human annotation or labeling [73]. Besides, all the data must
be tokenized to ensure compatibility with the model’s input.
Pretraining. It involves self-supervised training on large-
scale curated data, demanding a majority of resources within
the overall development workflow. Training LLMs efficiently
at scale necessitates various system innovations, such as state-
sharding optimizers [81], meticulous model placement using
data, pipeline, and tensor parallelisms [68, 69, 114].
Alignment. This stage aims to adapt LLMs with user intent
on a wide range of downstream tasks. Two primary align-
ing paradigms are commonly used: (1) prompt engineering,
specifying prompts (i.e., inputs) without modifying model
parameters. For example, in text summarization, appending a
prompt TL; DR to the input article can improve model per-
formance [80]; (2) fine-tuning, updating model parameters on
a task-specific dataset to improve performance in a particular
domain. Additionally, reinforcement learning from human
feedback (RLHF) [73] further enhances the alignment effect,
and parameter-efficient techniques like LoRA [40] have been
proposed to reduce the cost of fine-tuning.
Evaluation. Given the vast application scenarios of LLM,
it may be inaccurate to assess model quality solely based
on a single metric like training loss. There are numerous
factors to consider, such as accuracy, fairness, and toxicity
[59]. Consequently, it is crucial to account for a diverse set
of criteria and measure performance across multiple tasks
[22]. Furthermore, regular evaluation is essential during the
pretraining stage to provide timely feedback on model quality.
Deployment. To meet the strict cost and latency constraints of
LLM applications, several advanced techniques have been de-
veloped to achieve efficient model serving, including quantiza-
tion [30], distillation [84], CUDA kernel optimization [29,45],
model parallelism [58, 105] and memory management [52].

2.2 Acme Overview
Acme is our private GPU datacenter that empowers researchers
and engineers to develop DL models across diverse domains.
In this work, we focus on analyzing workloads within two
clusters dedicated to developing LLMs: Seren and Kalos. We
collect and analyze all jobs in these two clusters. Note that
there are additional clusters within Acme that are designated
for different fields, such as autonomous driving, and AI for
scientific research. However, these clusters are excluded in
this work as they are unrelated.

Cluster Architecture. Table 1 summarizes configurations of
these two homogeneous LLM clusters. Seren and Kalos have
2,288 and 2,416 GPUs respectively. Each node is equipped
with 8× NVIDIA A100-SXM 80GB GPUs [6] and 2× Intel
Xeon Platinum 8358P CPUs (128 threads in total). GPUs are
interconnected to each other by NVLink and NVSwitch [9],
and inter-node communication is achieved via NVIDIA Mel-
lanox 200Gbps HDR InfiniBand [4]. Compared to Seren,
Kalos is a relatively newer cluster with an improved net-
work configuration. Each node in the Kalos has a larger host
memory (2TB) and is equipped with four InfiniBand HCAs
specifically for application communication, along with an
extra HCA dedicated to storage.

Besides, the distributed storage system is also critical for
workload performance. Acme adopts an all-NVMe shared par-
allel file system for fast data access and storage. Moreover,
as time has advanced, our resource scheduling system has
evolved to support diverse cluster environments. Specifically,
our scheduler on Seren and Kalos is built atop Slurm [103]
and Kubernetes [21] respectively. In order to provide resource
guarantees for large-scale pretraining jobs, our scheduler en-
ables resource isolation and quota reservation. It further in-
corporates a best-effort job mechanism for higher utilization.
LLM Workloads. We develop a collection of LLMs1 rang-
ing from 7B to over 123B parameters. All of these models
follow the transformer-based decoder-only architecture, simi-
lar to the GPT [20, 79, 80] and LLaMA [92, 93] series. Acme
encompasses tasks in the aforementioned general LLM devel-
opment pipeline (§2.1). Note that Acme does not involve any
serving jobs, as our LLMs are deployed on a separate cluster
specifically for serving purposes.
Software Stack. To support the training of billion-scale mod-
els across thousands of GPUs, we built a system InternEvo2,
which integrates various system optimization techniques, such
as FlashAttention [28, 29], 3D parallelism [69], zero redun-
dancy optimization [81], mixed precision training [10], selec-
tive activation recomputation [51] and fine-grained communi-
cation overlap. Moreover, it accommodates additional tasks
such as model fine-tuning and evaluation.

2.3 Traces from Acme
The optimization of LLM-tailored systems and datacenter
management can significantly boost development efficiency
and yield substantial financial benefits. Achieving this goal
requires a profound understanding of the intrinsic charac-
teristics of LLM workloads. Many insights in existing DL
workloads analysis works [41, 47, 98] are not applicable to
LLM workloads due to the unique attributes of LLMs. To
fill this gap, we collected and analyzed workload traces from
our datacenter Acme. Table 2 compares the specifications and
trace information of Acme with prior trace analysis works
conducted by Microsoft, SenseTime, and Alibaba. Unlike

1Model: https://huggingface.co/internlm
2System: https://github.com/InternLM/InternEvo

https://huggingface.co/internlm
https://github.com/InternLM/InternEvo


For Task-Specific DL Models For LLMs

Datacenter Philly [47] Helios [41] PAI [98] Acme

Year 2017 2020 2020 2023
Duration 3 months 6 months 2 months 6 months
#Jobs 113K 3.36M 1.26M 1.09M
Avg. #GPUs 1.9 3.7 0.7 6.3
GPU Model 12GB/24GB 1080Ti/V100 T4/P100/V100 A100
Total #GPUs 2,490 6,416 6,742 4,704

Table 2: Comparison between our datacenter Acme and GPU
datacenters in prior trace analysis works: Microsoft Philly
[47], SenseTime Helios [41], Alibaba PAI [98]. Philly only
provides GPU memory sizes without clarifying GPU models.
The average number of requested GPUs in PAI can be less
than 1 (0.7), as it supports fractional (<1) GPU requests.

Acme, which is solely dedicated to LLM development, these
datacenters encompass a mixture of general DL workloads
from various domains. For instance, Helios [41] consists of
4 clusters dedicated to training models in computer vision
and reinforcement learning, while PAI [98] includes a diverse
range of servers for training and serving jobs.

Trace Source. Our characterization study is based on traces
collected from two LLM clusters in Acme. The traces span 6
months from March to August 2023. Seren contains 368K
CPU jobs and 664K GPU jobs, while Kalos job trace con-
sists of 42K CPU jobs and 20K GPU jobs. Additionally, we
provide a summary of the data sources for the traces used
in our study: (1) Job Log. We collect the job logs from our
scheduler database, which contains detailed information for
each job. This includes the job’s execution time (submission,
start, and end), final status (completed, canceled, failed), re-
quested resources (CPU, GPU, memory), work directory, and
other relevant data. (2) Hardware Monitor Data. This en-
compasses long-term, multi-dimensional data obtained from
various sources. We collect CPU, memory, and network us-
age data from Prometheus [77] database, GPU-related met-
rics from NVIDIA DCGM [7], and power-related data from
IPMI [12]. The sampling interval for this data is set at 15
seconds. (3) Runtime Log. To conduct a precise job failure
analysis, we capture stdout and stderr logs from LLM frame-
works during job execution. (4) Profiling Data. For a subset
of representative jobs, we delve deeper by performing fine-
grained profiling using tools like DCGM. The synergy of
these trace dimensions allows us to gain a holistic understand-
ing of LLM job characteristics in datacenters.

3 Datacenter Characterization

In this section, we perform a thorough analysis of Acme, in-
cluding comparing workload distribution between LLMs and
previous DL workloads (§3.1), investigating different LLM
workload types (§3.2), exploring resource utilization patterns
(§3.3) and assessing environmental impacts (§3.4).
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Figure 2: Overview of different datacenter characteristics. (a)
Workload: CDF of the GPU job duration. (b) Infrastructure:
CDF of GPU utilization, where Helios’ data is not available.
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Figure 3: Comparison of workload distribution based on the
number of requested GPUs. (a) CDF of job count. (b) CDF
of GPU time (i.e., requested GPU number × duration).

3.1 LLMs versus Prior DL Workloads
Shorter Job Duration. As shown in Figure 2 (a), contrary
to the prevailing stereotype that LLM-related jobs are typ-
ically long-running, we find the workloads in our clusters
(blue and orange lines) exhibit shorter GPU job durations
(i.e., job runtime, excluding queuing delay) compared to the
DL workloads observed in previous job traces (dotted lines).
Specifically, both the Seren and Kalos have a median job
duration of 2 minutes, which is 1.7∼7.2× shorter than the
median job durations of other clusters. Furthermore, it is ev-
ident that the more recent trace demonstrates a shorter job
duration distribution. In particular, when considering the av-
erage job duration in the Philly cluster (collected in 2017), it
is 2.7∼3.8× longer than Helios (2020) and PAI (2020), and
12.8× longer than Acme (2023). To provide an explanation
for this observation, we outline three potential factors: (1)
Hardware upgrade. The iteration of GPU and networking
delivers substantial efficiency improvement. (2) Abundant
resources. Users usually request more resources (as shown
in Table 2), averaging 5.7 GPUs in the Seren and 26.8 GPUs
in the Kalos. This can significantly accelerate the training
process. (3) Extensive associated workloads: LLM develop-
ment pipeline involves numerous small-scale associated jobs,
such as evaluation. We will delve into this in §3.2. (4) High
incompletion rate: Approximately 40% of jobs fail, with com-
pleted jobs consuming only 20∼30% of GPU resources. This
highlights the urgent need for a fault-tolerant system. Further
details can be found in Figure 17 and Appendix A.1.
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across different workload types in Seren (a) and Kalos (b).

Polarized GPU Utilization Figure 2 (b) shows cluster-wide
GPU utilization distributions across various clusters. It is ev-
ident that the GPU utilization in our two clusters exhibits a
polarized pattern, primarily concentrated in two distinct states:
0% and 100%. This polarization mainly stems from the fact
that the workloads in our clusters share similar model archi-
tectures, i.e., transformer-based LLMs. In contrast, Philly and
PAI encompass a broader range of utilization. Besides, when
comparing the median GPU utilization, Seren and Kalos
exhibit significantly higher values at 97% and 99%, respec-
tively, in contrast to 48% and 4% observed in Philly and PAI.
This observation aligns with the common understanding that
LLMs are computationally intensive. It also implies that GPU-
sharing-based scheduling techniques [42, 99, 100, 107] may
not be suitable for LLM development. Note that ‘GPU utiliza-
tion’ may sometimes be a weak utilization indicator [8, 95].
We provide a more precise utilization analysis in §3.3.
High-skewed Workload Distribution. We further investigate
the CDF of GPU demands in relation to the number of jobs
(Figure 3 (a)) and GPU time (Figure 3 (b)). For the number of
jobs, all the clusters share a similar pattern in that the majority
of jobs are single-GPU jobs and less than 7% of jobs request
over 8 GPUs. However, when examining GPU time, single-
GPU jobs only account for less than 2% resources in our
two clusters, while taking over 68% GPU time in PAI. In
stark contrast, large-scale jobs (≥ 256 GPUs) dominated the
GPU time in Kalos, occupying more than 96% of resources.
The much steeper distribution poses substantial challenges
for the design of cluster schedulers. A majority of resources
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Figure 6: CDF of GPU job duration and queuing delay for
different workload types in Seren (a, b) and Kalos (c, d).

are allocated to a few pretraining jobs, potentially causing
head-of-line blocking issue and resulting in severe queuing
delay. Existing DL cluster schedulers [37, 62, 76, 99, 102]
typically depend on preemption mechanism, however, the
considerable recovery overhead makes them not applicable
to LLM workloads. This highlights the critical need for a
scheduling system tailored for LLM clusters, considering the
workload features of the entire pipeline.

3.2 Workload Categories
To strive for a deeper understanding of the characteristics of
different workloads in the LLM development pipeline (§2.1),
we further categorize jobs into specific types according to
their production division and metadata (e.g., job names).
Irrelevance of Job Count and Resource Usage. Figure 4
presents the distribution of job counts and GPU time across
various workload types, where only Seren contains SFT
and MLLM workloads. Besides, MLLM jobs incorporate
their own development pipeline (e.g., pretraining) and adopt
smaller model scales for exploration purposes. Our analysis
primarily focuses on LLM jobs. It is obvious that evaluation
jobs constitute the majority of the total job count in both clus-
ters, yet they consume a relatively small portion of resources
(0.8% in Kalos). In contrast, pretraining jobs only account for
0.9% and 3.2% of the total job count but consume 69.5% and
94.0% of the total GPU time in Seren and Kalos respectively.
Job Type Correlates with GPU Demand. We further depict
GPU demand distribution across various workload types in
Figure 5. Each box is framed by the first and third quartiles,
while the median value is indicated by the black line within
the box. Both whiskers are defined at 1.5× the InterQuartile
Range (IQR). Compared to evaluation jobs, which typically
require less than 4 GPUs, pretraining jobs often require over
100 GPUs. This observation partially explains why evaluation
jobs in Kalos consume only minimal resources in Figure 4(d).
Additionally, we notice that debugging jobs have a wide range
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Figure 7: Infrastructure utilization. CDF of various metrics:
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Tensor Core (TC), (b) memory footprints of host and GPU, (c)
CPU utilization, (d) normalized InfiniBand (IB) HCA send
and receive bandwidths (Seren only). Seren and Kalos are
represented by blue and orange lines respectively.

of GPU requests, which aligns with the fact that testing jobs
are typically needed for various types of tasks.
Similar Temporal Distribution. Figure 6 shows the distri-
bution of job duration and queuing delay across different
workloads. In terms of job duration, although pretraining jobs
have the longest duration, they surpass other workloads within
an order of magnitude in the median, and less than 5% jobs
last for over 1 day in both clusters. This can be attributed
to frequent failures during pretraining, which will be further
explored in §5. Regarding job queuing delay, contrary to pre-
vious reports [41, 47, 98] suggesting that larger-scale jobs
experience longer wait times, we observe that evaluation jobs
have the longest queuing delay despite having the lowest GPU
demands and shortest job duration. This discrepancy is due to
the majority of resources being reserved for pretraining jobs
to minimize their queuing delays. Evaluation jobs are typi-
cally submitted as a batch simultaneously with lower priority,
utilizing the limited spare resources.

3.3 Infrastructure
Beyond the workload characterization, we further conduct a
comprehensive analysis of our infrastructure utilization.
Higher GPU Utilization. Given the critical role of GPUs
in LLM development, as shown in Figure 7 (a, b), we col-
lect fine-grained performance counter metrics from DCGM
[7], including SM Activity (PROF_SM_ACTIVE), TC Activity
(PROF_PIPE_TENSOR_ACTIVE), and GPU memory footprint
(DEV_FB_USED). In contrast to PAI [98], where a significant
portion of GPU memory is underutilized (less than 25% mem-
ory), our observations in Kalos indicate that 50% of GPUs
consume over 75% of GPU memory (60 GB). Furthermore,
we observe that the median SM activity in both clusters is
approximately 40%, which is twice the reported 20% in PAI.
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Figure 9: Average power distribution of hardware modules
in Seren GPU servers, gathered from IPMI and DCGM.

These findings align with the memory-intensive and compute-
intensive natures of LLMs.
Underutilized Associated Resources. We also delve into the
aspects of CPU, host memory, and network that are closely
associated with LLM development. In Figure 7 (b), we com-
pare the memory footprint on the host side and GPU side. It
is evident that CPU memory utilization remains below 50%.
Note that Kalos boasts twice the memory capacity (2TB)
compared to Seren (Table 1). This demonstrates the signifi-
cant underutilization of CPU memory. More detailed analysis
is provided in Appendix A.2. Although the GPU memory of-
floading technique [82,83] improves CPU memory utilization
and alleviates GPU memory limitations, it also impedes train-
ing throughput due to limited PCIe bandwidth. Therefore, we
do not employ the offloading mechanism. Additionally, due
to a high CPU-to-GPU ratio (16 CPUs per GPU), CPUs are
typically underutilized, as depicted in Figure 7 (c). Moreover,
in Figure 7 (d), we measure the network send and receive
bandwidths of IB in Seren. Two lines are well overlapped,
as IB serves for symmetrical communication during LLM
execution. We observe that NICs remain idle for over 60% of
the time, and the active bandwidth rarely surpasses 25% of
the maximum bandwidth provided by IB.

3.4 Environmental Impact
LLM development leads to substantial energy consumption
and carbon emissions [74, 104]. We report our analysis of
infrastructure power consumption patterns to inspire future
datacenter designs that minimize environmental impact.
GPUs Dominate Power Consumption. Figure 8 (a) depicts
the distribution of GPU power consumption. We observe that
around 30% of GPUs are in an idle state and still need to con-
sume 60W. Besides, due to intensive computation demand,
we find that 22.1% and 12.5% of GPUs consume over 400W
(TDP) in Seren and Kalos respectively, with some even reach-
ing 600W. This may cause the risk of some metastable is-
sues [43]. Figure 8 (b) presents the power consumption distri-
bution of all GPU servers, along with an additional 6 CPU-
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Figure 10: GPU SM utilization of pretraining a 123B LLM
using different strategies of InternEvo [25] over 2048 GPUs.

only servers, in Seren. We find GPU servers consume 5×
power than CPU servers on average. Additionally, Figure 9
demonstrates that GPUs account for approximately 2/3 of the
total power consumption in GPU servers, while CPUs only
contribute 11.2% and power supply units (PSUs) consume
9.6% of the energy during voltage conversion. These observa-
tions align with the understanding that GPUs are the primary
power consumers in LLM development.
Carbon Emission. Our datacenter Acme has a PUE (Power
Usage Effectiveness) of 1.25. Moreover, it operates on ap-
proximately 30.61% of carbon-free energy (statistics for the
year 2022), which includes renewable sources like solar and
wind power and achieves a carbon emissions footprint (CO2e)
rate of 0.478 tCO2e/MWh. Based on our node-level power
consumption data, we calculate that Seren consumed approxi-
mately 673 MWh electricity in May 2023, which leads to total
effective emissions of 321.7 tCO2e. We believe that imple-
menting advanced approaches like [14,26,104] can effectively
reduce carbon emissions.

4 Workload Profiling
In this section, we conduct fine-grained analyses of resource
utilization for representative tasks. Specifically, we focus on
pretraining and evaluation jobs, as they are the most resource-
intensive or quantity-intensive workloads.

4.1 Pretraining Workload
As aforementioned, pretraining LLMs requires substantial
computational resources. To enhance training efficiency, our
pretraining framework, InternEvo [25], undergoes continuous
refinement and iteration in its system design. As presented
in Figure 10, the initial version of InternEvo (adopted by
our early jobs) is denoted as (a) primarily utilizes 3D paral-
lelism akin to that of MegatronLM [69], and (b) employs a
hierarchical ZeRO mechanism [25] that implements selective
redundant sharding of model states. To provide a detailed ex-
ample, we profile an LLM with 123 billion parameters across
2048 GPUs. We also provide the profiling results of 1024
GPUs in Appendix A.3. For (a) 3D parallelism approach,
we adopt a configuration with pipeline parallelism= 4,

(a) 3D Parallelism (b) Hierarchical ZeRO
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Figure 11: Memory snapshot under different pretraining
strategies. Note that the extensive blue segment at the top
of (a) is simplified and can be further broken down into mas-
sive fragments (memory allocations), similar to the lower part.
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Figure 12: GPU memory consumption of different pipeline
ranks employing the 1F1B [68] strategy in InternEvo V1.

tensor parallelism= 8. We sample the first GPU of the
first pipeline rank for profiling. For (b) hierarchical ZeRO ap-
proach, we limit parameter sharding to subgroups of 64 GPUs
each. We collect GPU performance counters like DCGM
metrics at 1 ms intervals.
GPU SM Utilization. Figure 10 illustrates the GPU SM uti-
lization for the same LLM under various training strategies.
Both versions maintain the same global batch size and are
optimized according to their respective configurations. It is
evident that InternEvo V2 presents superior peak SM utiliza-
tion and exhibits reduced idle periods compared to InternEvo
V1, achieving around 16% acceleration. The relatively low
utilization of 3D parallelism is mainly due to the impact of
communication introduced by hybrid parallelism on the crit-
ical path, such as bubbles in pipeline parallelism. Note that
the different inter- and intra-node communication hardware
settings may lead to different optimal configurations.
GPU Memory Footprint. For a model comprising Ψ pa-
rameters, in the mainstream mixed precision training using
Adam [49] optimizer, the memory footprint of the parameters,
gradients, and optimizer states are 2Ψ, 2Ψ, and 12Ψ, respec-
tively. To reduce memory cost, ZeRO [81] effectively shards
redundant memory of these elements across global GPU work-
ers. Figure 11 illustrates the actual GPU memory usage over
time captured by the Pytorch memory snapshot tool [11]. The
upper dynamic part represents activations and the lower static
part represents the memory occupied by parameters, gradients
and optimizer states. Note that only allocated memory is de-
picted, while reserved memory is not presented. Our analysis
reveals that, in comparison to hierarchical ZeRO, the memory
requirement for activations in 3D parallelism is substantially
higher, even surpassing the sum of other components. This
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Figure 13: GPU SM utilization for the entire evaluation work-
load on HumanEval [24] dataset using a 7B LLM.

observation underscores the importance of efficient activation
memory management as a key factor for enhancing batch size
and throughput in 3D parallelism.
Imbalance in Activation Sizes. When employing pipeline
parallelism, each rank needs to hold a different quantity of
activations since the diverse number of micro-batches pending
backward computation across various pipeline ranks. Figure
12 illustrates this imbalance issue on different pipeline ranks.
It suggests that we should employ a specialized partitioning
mechanism to address the unbalanced memory usage among
different ranks in pipeline parallelism, in order to achieve
higher efficiency, such as recomputing activations.

4.2 Evaluation Workload
It is necessary to regularly evaluate the checkpoints produced
during pretraining to guide the evolution of LLM pretrain-
ing. Therefore, the LLM evaluation jobs take the majority of
jobs, each performing metric computation on different LLM
benchmark datasets. We analyze the workflow of the entire
evaluation and combine it with fine-grained resource usage
information collection quantitatively, demonstrating two up-
coming resource utilization issues. We will also discuss the
corresponding solutions in §6.2.
High Model Loading and Data Preprocessing Overhead.
During the initiation phase of evaluation jobs, it is imperative
to load model checkpoints for each task. Additionally, the data
preprocessing stage, particularly for tokenization, constitutes
a significant time expenditure. These factors contribute to the
underutilization of allocated GPU resources for a relatively
long period. As illustrated in Figure 13, the evaluation task
consumes over 1 minute prior to the actual GPU inference, ac-
counting for 29.5% of the evaluation duration. This overhead
is likely to increase with larger models or datasets. To address
the preprocessing overhead, one effective strategy is to cache
the tokenized data. Moreover, evaluation jobs are flexible,
allowing for the consolidation of multiple evaluation tasks
(datasets) into a single job. This consolidation can effectively
reduce the relative time overhead of the model loading phase
within the evaluation process.
High Metric Computation Overhead. The evaluation pro-
cess can often involve complex and time-consuming met-
ric computation. For example, synthesized program correct-
ness tests need to be performed on coding datasets like Hu-

manEval [24] and MBPP [17]. Moreover, the OpenAI GPT-4
API is invoked to assess the performance of model conver-
sations (e.g., Chatbot Arena [113]). These procedures can
take up to 30 minutes, during which the GPU remains idle.
Therefore, we can observe distinct stages of GPU usage, in-
cluding stages that require GPU for inference and generation,
and stages that do not require GPU for metric computation
and verification. Taking the HumanEval benchmark as an ex-
ample, as shown in Figure 13, the GPU is idle for the last 42
seconds, wasting about 19.0% of the total GPU time.

5 Failure Analysis
In this section, we conduct a comprehensive analysis of job
failures, primarily relying on runtime logs and hardware mon-
itor data from our two clusters. In Kalos, we gather logs from
32,500 tasks, which include 31,293 (96.3%) inference tasks,
647 (2.0%) pretraining tasks, and debugging tasks (1.7%).
In Seren, we only collected logs from 675 pretraining tasks.
Additionally, for pretraining tasks, we extract all pertinent
information and metadata recorded in the logs, including ac-
tual training steps, cold-start overhead, recovery timestamp,
etc. We hope our analysis can provide insights for future
fault-tolerance research in the development of LLMs.

5.1 Failure Category
We employ a failure diagnosis system, leveraging a combi-
nation of rule-based and LLM techniques, to extract error
information from the runtime logs. We provide detailed expla-
nations of this system in §6.1. Besides, to ensure the accurate
identification of the types and root causes of failures, manual
checks and corrections are conducted. Table 3 provides a sum-
mary of common failures in Acme, including their occurrence
frequency and restart time. Basically, they can be classified
into three categories as follows. Note that these classifica-
tions may overlap, and the primary criterion for classifying a
specific type of error is its most frequent occurrence.
• Infrastructure. Infrastructure-related failures arise from is-
sues within the underlying computational platform or remote
storage. These failures mainly occur midway through the
job execution process, especially in pretraining tasks. They
severely impact the training progress due to laborious and
time-consuming recovery process.
• Framework. Several types of runtime errors, such as Run-
timeError, ValueError, and AttributeError, can be associated
with tensor operations, shapes, data types, or unexpected be-
haviors. They are often observed in the initial phases of jobs
and are typically resolved by fixing the configurations.
• Script. Script errors typically stem from programming er-
rors or user oversights. They constitute the majority of failures
and are often addressed by revising codes.

5.2 Failure Characterization
We highlight several key observations from our analysis:
Infrastructure Failures Cause Most Severe Impact. As
shown in Table 3, jobs that fail because of infrastructure is-



Category Reason Num GPU Demand Time to Failure (mins) GPU Time (mins) Time to Restart (mins) Cluster
Average Median Average Median Average Total% Average Median TR/TF%

Infrastructure

NVLink Error 54 800 896 868.1 155.3 585683 30.25% 95.6 0.2 11.02% S, K
CUDA Error 21 847 1024 923.2 586.0 785099 15.77% 78.3 2.0 8.48% S, K
Node Failure 16 712 768 1288.8 535.8 934394 14.30% 102.8 21.5 7.98% S
ECC Error 12 680 512 1303.4 1192.3 958404 11.00% 2.8 1.8 0.21% S, K
Network Error 12 758 768 549.6 310.1 394821 4.53% 592.1 7.4 107.74% S, K
Connection Error 147 29 1 51.9 0.5 24492 3.44% 0.8 0.0 1.51% S, K
S3 Storage Error 10 422 256 2317.8 202.2 222151 2.12% 6.2 0.2 0.27% S
NCCL Timeout Error 6 596 512 159.7 48.1 86856 0.50% 66.7 43.6 41.78% K
NCCL Remote Error 3 1152 1024 50.5 22.6 52419 0.15% 0.0 0.7 0.09% K

Framework

Dataloader Killed 6 445 508 1580.6 961.4 764170 4.38% 115.1 0.9 7.28% K
Attribute Error 67 228 8 67.8 1.2 60914 3.90% 2.4 0.0 3.58% S, K
Out of Memory Error 14 572 640 323.8 14.5 245278 3.28% 122.7 1.2 37.89% S, K
Runtime Error 65 441 352 66.4 3.9 27667 1.72% 10.9 1.5 16.41% S, K
Assertion Error 105 413 256 41.7 3.0 12315 1.24% 185.9 1.6 445.87% S, K
Value Error 33 387 256 9.9 3.7 5049 0.16% 27.4 0.6 276.74% S, K
Zero Division Error 5 499 256 14.5 15.6 5363 0.03% 2.5 1.1 17.31% S, K
Model Loading Error 104 8 8 2.6 2.6 20 0.00% 0.0 0.0 0.00% K
Dataset Loading Error 5 1 1 1.6 1.6 1 0.00% 0.0 0.0 0.00% K

Script

File Not Found Error 568 21 1 14.2 0.4 5210 2.83% 0.4 0.0 2.58% S, K
OS Error 266 8 1 9.6 0.8 1098 0.28% 0.3 0.0 3.17% S, K
Type Error 620 18 4 0.9 0.3 97 0.06% 0.2 0.0 28.27% S, K
Name Error 18 247 24 3.2 0.5 947 0.02% 2.9 2.4 90.92% S, K
Permission Error 7 438 512 4.3 0.8 2131 0.01% 2.4 2.2 56.38% S
Import Error 111 93 8 1.1 0.4 74 0.01% 0.7 0.0 63.68% S, K
Key Error 260 7 0 3.0 1.6 55 0.01% 0.1 0.0 2.10% S, K
Syntax Error 10 391 384 0.7 0.6 348 0.00% 1.7 1.7 261.73% S, K
Argument Error 3 344 512 0.7 0.7 288 0.00% 2.7 0.7 408.47% S
Called Process Error 4 256 256 0.2 0.2 52 0.00% 11.7 10.9 5714.29% S
Index Error 23 6 1 1.6 0.9 21 0.00% 0.8 0.0 49.73% S, K

Table 3: Job failure statistics. It is sorted based on Total% (i.e., the percentage of GPU time summation in different categories).
Num: Number of Occurrence. TF: Time to Failure. TR: Time to Restart (i.e., Restart Timestamp − Failure Timestamp). GPU
Time: TF×GPU Demand. S/K: Occurrence of errors in Seren/Kalos respectively.
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Figure 14: The training progress of two LLMs, with special
emphasis on the manual recovery at night.

sues often use a substantial number of GPUs (GPU Demand)
and require considerable effort to restart (Time to Restart).
They take over 82% GPU resources (GPU Time) with only
11% failed job quantity (Num). Most of these jobs are long-
term pretraining tasks that can experience hardware failures
multiple times, such as issues with GPU (e.g., CUDAError,
ECCError), NVLink (NVLinkError), and network system
(NCCLRemoteError, S3StorageError). Note that NodeFail-
ure indicates uncategorized errors caused by unclear hardware
issues. Addressing these infrastructure failures requires metic-
ulous diagnostic efforts to pinpoint the source of the problems,
often leading to the maintenance or replacement of defective
hardware, which results in significant restart costs.
Failures Caused by High Temperature. Another notewor-

thy observation is that training 7B models in Kalos tends to
result in GPU overheating, which can cause NVLinkError
or ECCError. This phenomenon is largely due to the highly
optimized communication cost, resulting in an exceptionally
low GPU idle rate. We observe that the overall temperature
in the cluster server room increased by approximately 5◦C
when training these models. Besides, we find most of these
jobs occurred in July 2023, which is the hottest month on
record [64]. This anomalous climate may be a potential cause
of these failures, which is aligned with the finding recently re-
ported by Microsoft [101]. We provide more detailed data on
GPU temperature in Appendix A.4. Subsequently, our team
enhanced the cooling capabilities of the cluster, leading to a
significant reduction in the frequency of such failures.

Many Failures Induced by Auxiliary Services. In our pre-
training framework, we connect to external components or
services for metric reporting, logging, monitoring and alerting.
These auxiliary services are vulnerable to network instabili-
ties, potentially resulting in timeouts or failures that can de-
celerate or disrupt the training process. A significant number
of ConnectionError and NetworkError incidents stem from
these auxiliary services.

Evaluation Jobs Rarely Encounter Errors. In Kalos, only
6.7% of evaluation tasks encounter errors, and notably, there



are no recorded instances of GPU or NVLink failures. The
low error rate may be attributed to their short duration and the
resultant decreased stress on GPUs and NVLink connections.
Consequently, this diminishes the chance of hardware and
operational failures that are more frequent in pretraining jobs.

5.3 Failure Recovery
There are three scenarios where we should restart a job: (1)
when an error occurs within the job, (2) when there are anoma-
lies in training metrics such as a loss spike, and (3) when the
training process is stuck. A ‘loss spike’ refers to a sudden
increase in the loss that was previously decreasing normally,
and does not recover over a certain period. Upon restarting,
jobs revert to the last checkpoint, resulting in loss of train-
ing progress. Since existing LLM frameworks lack automatic
recovery support, developers usually manually restart inter-
rupted training jobs. Developers often need to be on call in
turn to ensure timely completion of the pretraining model.

As shown in Figure 14, we select two pretraining jobs in
the early stage (March to April) when we handle all fail-
ures manually. We extract information from the logs of two
clusters’ large-scale model training processes, including the
runtime duration of each submission, start and end times, and
the initial and final iteration numbers of training. The 104B
model is an early attempt when the framework is still under
development. Consequently, the process of loading previous
model checkpoints led to a substantial loss in the overall train-
ing process. Conversely, in the training of the 123B model a
month later, we improved the framework and adopted smaller
checkpoint save intervals. Moreover, we added a feature to
gracefully terminate jobs, allowing for the preservation of
current training results before ending the job. It is evident that
the training process of the 123B model is more stable, with
fewer losses incurred due to rollbacks. However, this progress
came at a cost, as jobs that were interrupted at various times
had to be rapidly restarted.

6 Deployed LLM Systems
As highlighted earlier, the development process of LLMs
presents significant obstacles yet unveils viable strategies for
overcoming these issues. This section will introduce our ef-
forts in two stages: (1) Pretraining: enhancing fault tolerance
through LLM-involved failure diagnosis and automatic recov-
ery. (2) Evaluation: achieving prompt performance response
via task decomposition.

6.1 Fault-tolerant Pretraining
Motivation. During LLM pretraining, failures are inevitable
and frequently occur due to the substantial number of GPUs
involved and the extensive duration of the training process
[15, 46, 89, 97]. These failures can dramatically impede the
training progress and lead to severe resource inefficiency (§5).
Consequently, to minimize infrastructure downtime, it is com-
mon practice to assign on-call duties to address failures man-
ually. This places a significant burden on engineers and re-
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Figure 15: Workflow of failure diagnosis and model recovery.

searchers, as expressed in the complaints raised by the Meta
OPT [111] and BigScience BLOOM [1] teams. Our team
also faces this problem. To alleviate this burden and enhance
hardware efficiency, we develop a system that automatically
detects the root causes of faults and facilitates recovery.
System Design. Our fault tolerance system is seamlessly
integrated into our LLM pretraining framework. It com-
prises three essential modules: (1) Checkpointing, achieving
more frequent model saving to minimize the loss of training
progress; (2) Diagnosis, using a combination of heuristic rules
and LLM to identify the root cause of different failures accu-
rately; (3) Recovery, employing a holistic detection toolkit to
pinpoint fault nodes and automatically restart training from
the properly saved checkpoint. We delve into them in detail.
1. Asynchronous Checkpointing . Frequent checkpointing
efficiently mitigates the wasted time caused by unexpected
faults [32]. However, as LLMs can produce TB-scale model
states (referring to total model states across all GPUs), the
process of saving checkpoints itself can introduce substantial
overhead, resulting in training time slowdown up to 43% [61].
To tackle this problem, we adopt the asynchronous check-
pointing strategy [65, 71], which effectively separates the
checkpointing process from the training process. Our obser-
vations indicate that the CPU memory (refer to Figure 7 (b))
is capable of accommodating several checkpoints. By taking
advantage of this, we can store the model state in memory
and utilize a separate thread to regularly save these states to
remote persistent storage. This simple strategy significantly
reduces checkpointing overhead.
2. Failure Diagnosis . As we discussed in §5, failures can arise
from numerous intricate factors, including errors from user
script or framework, as well as issues with hardware subjected
to high-stress conditions. It is crucial to determine whether a
failure is recoverable for the purpose of automatic recovery.
A common approach is to use a combination of heuristic rules
to filter and conduct regular expression matching on the logs
of faulty jobs [23, 47, 53, 54, 67]. However, this approach
often proves inaccurate due to the wide-ranging diversity and
complexity of error logs. There might not be a specific error
statement in many cases, but multiple errors could coexist
simultaneously. For example, a job might fail with messages
that include NCCLTimeoutError, CUDAError, and multiple



kinds of RuntimeError, whereas the root cause is CUDAError.
Trying to match every error scenario with a specific rule set
can become impractical.

To address this challenge, we utilize the exceptional text un-
derstanding ability and extensive knowledge base of LLMs to
identify the root causes of different failures automatically. As
depicted in Figure 15, we incorporate an LLM with rule-based
diagnosis to achieve efficient and accurate failure diagnosis.
It mainly contains the following two steps:

➤Real-time Log Compression. The extensive log files
generated by pretraining jobs, primarily consisting of training
metric records, can reach sizes of hundreds of MBs. To accel-
erate diagnosing and meet the context length limit of LLMs,
log compression is conducted first. The system continuously
updates a collection of regular expressions, termed as Filter
Rules. These rules efficiently remove regular log outputs, such
as initialization information, training metric records, frame-
work outputs, and debug information. A vital component of
the system, the LLM-based Log Agent, is responsible for ana-
lyzing real-time generated log segments and identifying lines
that follow fixed patterns. By doing so, the LLM-based Log
Agent dynamically writes regular expressions to update the
Filter Rules, effectively minimizing the size of the log files.
Additionally, the Log Agent forwards identified error mes-
sages to subsequent modules for diagnosis.

Furthermore, we employ the self-consistency [96] approach
to ensure the robustness of the Log Agent’s results and to guar-
antee the formatting of these results. This involves processing
each log segment multiple times and having another LLM
vote on multiple results from the Log Agent, ensuring the ac-
curacy of matches through regular expressions. Over time, the
Filter Rules become more comprehensive for the current task,
making the log filtering process more efficient. Furthermore,
the system can utilize metadata from tasks to identify repeti-
tive or similar tasks, directly applying existing Filter Rules for
log filtering, thereby avoiding redundant work. This feature
is particularly beneficial in large model cluster environments,
where fewer tenants and task resubmissions are common.

➤LLM-assisted Automated Diagnosis. The Log Agent
efficiently compresses runtime logs, isolating critical error
logs like CUDAErrors or runtime exceptions. Though logs
are already compressed upon arrival at this module, error logs
may still be lengthy. We apply a two-step approach to tackle
this issue. First, the error logs are compared against a rule
set that has been defined over time through the diagnosis of
errors from past failed jobs. If the pre-defined rules fail to
diagnose the issue, the compressed log is vectorized through
an embedding model and stored in a vector store, serving as
a retrieval repository. Then, the Failure Agent intervenes. It
utilizes a Query Engine [56] to search through the vector store.
Through this search, the Failure Agent can identify log lines
that reflect the root cause of job interruption, extract the type
of error, and indicate whether the error originated from user
mistakes or infrastructure failures, providing a hint for the

recovery process. In addition, it also generates a mitigation
suggestion for users or the operation team.

The Failure Agent also contributes to the continuous learn-
ing of the failure diagnosis system. For each new failure,
once diagnosed and resolved, the Failure Agent writes a cor-
responding regular expression and adds it to the Rule-based
Diagnosis module. This process is iterative and ensures that
the Failure Diagnosis system evolves, becoming more adept
at diagnosing and suggesting mitigation methods for failures.
To achieve more robust performance, we currently utilize the
GPT-4 [2] for diagnosis, with plans to transition to our LLMs.
3. Fast Fault Detection and Recovery . Based on the failure
diagnosis result, if it belongs to one kind of infrastructure
failure, we conduct a corresponding detection test to identify
the problematic nodes. For instance, to promptly resolve the
frequent NVLinkError, we employ a two-round NCCL test
[5] approach. First, we divide all nodes into multiple two-
node worlds and execute allgather task in each pair. If the
total number of servers is odd, we leave one world size as
three. If allgather task fails in a world, the nodes in that
world are potentially faulty nodes. Then, in the second round,
we pair potential faulty nodes with normal nodes to form
new worlds. The nodes in each world continue to execute
the allgather task, thus identifying the faulty nodes and
then cordoning them off. On the other hand, if the failure
is attributed to a sudden increase in loss (i.e., ‘loss spike’
[27,111]), which is automatically triggered by our pretraining
framework, we opt to an earlier healthy restart checkpoint and
bypass subsequent data batches. This approach effectively
maintains model quality.
System Performance. Our asynchronous checkpointing strat-
egy offers a substantial reduction in checkpointing overheads,
as the checkpointing process does not block the training pro-
cess. The checkpoint time and overhead percentage of 7B and
123B size models are reduced by 3.6∼58.7× (interval=30
mins), respectively. Note that the time taken for persisting to
storage is not included in asynchronous checkpointing mea-
surement. Moreover, our failure diagnosis system significantly
reduces manual intervention by around 90% and thus reduces
developers’ burden.

6.2 Decoupled Scheduling for Evaluation
Motivation. Evaluating the quality of LLMs based solely on
a single metric, such as training loss, may not provide an ac-
curate assessment [59]. Therefore, it is vital to incorporate a
variety of criteria and evaluate performance across an array of
tasks [22]. Our LLM framework conducts regular evaluations
for every checkpoint during the pretraining phase in our data-
center. This allows developers to track the progress of model
training and identify the optimal model checkpoint. We aim
for swift feedback to facilitate timely adjustment. However,
as shown in Figure 6, evaluation jobs experience the longest
queuing delay due to limited resources and concurrent submis-
sion of numerous trials. Despite these challenges, we identify
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several opportunities to expedite the evaluation process.
System Design. We develop a trial coordinator to harmonize
the operations of the cluster scheduler and LLM framework.
This design incorporates the following three key techniques
aimed at enhancing the efficiency of the evaluation process.
1. Decoupling Remote Model Loading . Given the substan-
tial size of LLMs, retrieving and loading them from remote
storage can be a lengthy process. Furthermore, the concurrent
execution of numerous evaluation tasks (around 60 datasets)
can exacerbate this loading process due to increased con-
tention. Figure 16 (Left) shows the average model loading
speed on a range of concurrent evaluation trials within Seren.
It reveals a huge decline in loading speed when increasing the
number of single-GPU trials from 1 to 8 on a single node, due
to the bandwidth limitation (25Gb/s) of our storage NIC. On
the other hand, the loading speed stabilizes when the number
of trials ranges from 8 to 256 GPUs. This observation inspires
us to take a strategic approach. Rather than submitting each
evaluation dataset as a separate trial, we separated the model
loading process from the evaluation process, as depicted in
Figure 16 (Right). Specifically, the trial coordinator initially
retrieves the available node list from the cluster scheduler
and then generates a series of precursor jobs for each node.
These jobs load the model from remote storage to local shared
memory. Following this, the coordinator submits the evalu-
ation jobs to the scheduler, which loads the model via the
high-bandwidth PCIe. This method effectively utilizes spare
host memory. After the evaluation finishes, the coordinator
clears the files.
2. Decoupling Metric Computation . As shown in Figure
13, the evaluation process can often involve complex and
time-consuming metric computation. For example, synthe-
sized program correctness tests must be performed on coding
datasets like HumanEval [24] and MBPP [17]. To address
this issue, we decouple the metric computation process from
the evaluation trial. After the model inference is performed
on the GPU, its output is quickly saved into files, terminating
the inference workload. Given that the outputs are typically
text-based and thus small in size, this file-dumping process
is swift. We then generate CPU jobs to carry out the metric

computations. This approach effectively minimizes GPU idle
time and accelerates the evaluation.
3. Prior-based Elastic Scheduling . In addition to the decou-
pling approach, we notice that our prior knowledge regarding
the approximate trial runtime for each evaluation dataset is
quite robust. Furthermore, these datasets are flexible, allowing
us to batch multiple sets into one trial to circumvent model
loading. We can also break down large datasets and decou-
ple metric computation. As a result, the trial coordinator can
maximize GPU occupancy through decomposition, balance
each GPU’s workload using prior information, and employ a
round-robin allocation strategy on sorted job queues. More-
over, we prioritize evaluation trials with lengthy CPU metric
computations in the job queue to better overlap its computa-
tion. This approach not only enhances workload balance but
also minimizes trial switch overhead.
System Performance. We conducted a representative test of
the trial coordinator using a typical evaluation job on a 7B
size LLM, which involved evaluating the workload across 63
datasets. We measured the makespan necessary to complete
all evaluation trials under two different conditions: a single
node (representing limited resources) and four nodes (repre-
senting relatively ample resources). The trial coordinator can
reduce the makespan by 1.3× and 1.8× respectively.

7 Discussion
Scope Limitations. Despite our best efforts to analyze the
workloads in Acme, it is an inescapable reality that we can-
not cover all types of workloads. Limitations include: (1)
Our analysis focuses on the developmental process preceding
model serving and Acme does not encompass any serving jobs
(i.e., workload in the deployment stage). (2) We concentrate
our analysis predominantly on GPU jobs, providing limited
room for CPU jobs. (3) We mainly characterize transformer-
based, decoder-only architecture models (GPT-3 [20] and
LLaMA 2 [93]). For newer model architecture, we provide
a simple characterization of the Mixture of Experts (MoE)
model [85] in Appendix A.5. Other model architectures like
the Multimodal LLM [78] fall outside our scope of analysis.

8 Conclusion
In summary, we analyze LLM workloads and resource uti-
lization in our datacenter Acme, revealing unique features and
challenges of LLM development, such as resource inefficien-
cies and failure impacts. We also uncover potential opportuni-
ties to optimize systems tailored for LLMs and introduce our
efforts for pretraining and evaluation workloads. We believe
that our lessons and insights have broad applicability and can
well benefit subsequent research.
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Figure 17: Final statuses of jobs in terms of (a) quantity and
(b) utilized GPU resources.
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Figure 18: Distribution of host memory on a server in Seren
during executing a pretraining job. Idle memory is not shown.

A Supplementary Characterization
In this section, we provide additional analysis to further char-
acterize the workload features during our LLM development.

A.1 Job Final Statuses
High Incompletion Rate. Figure 17 summarizes the distribu-
tion of three key final statuses across our two clusters, reveal-
ing a similar pattern. It is obvious that only approximately
20∼30% of resources are consumed by jobs that finally com-
plete. Besides, about 40% of jobs fail, utilizing 10% of GPU
resources. This suggests that failures predominantly occur
in the early stages of execution, aligning with the statistics
presented in Table 3. Canceled jobs, while constituting only
around 7% of the total job count, command over 60% of GPU
resources. This pattern suggests a prevalence of large-scale
pretraining jobs being canceled by users. Beyond the com-
mon cancellation motives cited in prior studies (e.g., achieving
desired model performance sooner than expected, early recog-
nition of poor hyperparameter configuration) [41, 75, 99], our
experience with LLM pretraining has identified two additional
frequent causes: (1) Users pausing jobs to adjust parameters
in response to performance anomalies, such as loss spikes.
(2) Jobs stalling due to infrastructure issues without throwing
error messages, only to be addressed upon manual inspection
by users, leading to significant resource wastage. These obser-
vations underscore the necessity for a failure-handling system
that can autonomously detect and rectify faulty jobs, which is
further elaborated in §5.3 and §6.1.

A.2 Host Memory
Memory Footprint Breakdown. As depicted in Figure 18,
we illustrate the distribution of active physical host memory
within a compute node, which utilizes 123GB of the total 1TB
available. This showcases a typical pattern of CPU memory
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Figure 19: GPU SM utilization of pretraining a 123B LLM
using different strategies of InternEvo [25] over 1024 GPUs.
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Figure 20: Memory snapshot under different pretraining
strategies. Note that the extensive blue segment at the top
of (a) is simplified and can be further broken down into mas-
sive fragments (memory allocations), similar to the lower part.

consumption for pretraining jobs. However, it is important to
note that memory usage can significantly vary across different
tasks. Specifically, the memory footprint of the dataloader can
be considerably larger when employing Megatron-LM [69],
which requires loading the metadata of the entire dataset.
In contrast, our approach of loading data on-the-fly proves
to be more memory-efficient without obviously impacting
throughput. Furthermore, the memory requirements for asyn-
chronous checkpointing (§6.1) largely depend on the model
size and training configurations. The memory footprint de-
picted in this figure corresponds to the configuration outlined
in Figure 10(a). In addition to the training processes, memory-
intensive operations include TensorBoard [13] (6.5GB), the
client daemon along the critical components (e.g., data and
metadata caching) of the distributed file system (45.3GB).
The remainder (0.6GB) encompasses Prometheus monitoring
components, NVIDIA drivers, the Slurm scheduler daemon,
and other system processes primarily related to sensor mon-
itoring and system management. In general, there is a sub-
stantial amount of memory available, which can be leveraged
for various purposes. Previous efforts [16, 66] have shown
the potential for disaggregating CPU and memory usage from
GPU allocations, suggesting that there may be additional op-
timization opportunities for LLMs, such as enhancing fault
tolerance [97].
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Figure 22: GPU SM utilization of pretraining a MoE model
Mistral 7B [48] with 1024 GPUs in Seren.

A.3 Pretraining under Different Scale
Figures 19 and 20 provide supplementary pretraining profiling
results for a 123B LLM across 1024 GPUs. These figures
complement the profiling observations depicted in Figures 10
and 11. It is evident that they present very similar patterns
to the 2048 GPUs, demonstrating the generalizability of our
characterization.

A.4 GPU Temperature
Figure 21 depicts the temperature distributions of GPU core
and GPU memory. The GPU memory temperature is gener-
ally higher than the GPU core temperature. As corresponding
to power consumption distribution shown in Figure 8, temper-
ature presents a similar pattern in that some GPUs are under
heavy load and have higher temperature (over 65◦C). These
suggest a need for enhancements in our cluster’s cooling sys-
tem to address the issue of elevated temperatures.

A.5 MoE Model
As shown in Figure 22, the MoE model presents much lower
GPU utilization compared with the dense model shown in
Figure 10. This is mainly due to the fact that the MoE model
requires frequent all-to-all communication and necessitates
high-quality internode communication, however, our single
IB NIC server cannot efficiently handle such job. Here we
directly use the official training configuration released by Mis-
tral. On the other hand, InternEvo is still under development
and we are working on performing tailored optimizations for
MoE models.

B Related Work
DL Workload Characterization. Prior works conduct DL
workloads analysis from different companies. Philly [47] pro-

vides insights on the impact of job locality on queuing delay
and resource utilization from Microsoft, in addition to identi-
fying different failure reasons. Helios [41] from SenseTime
illustrates the nature of cluster resource utilization and user
disparity, evaluated from the perspectives of the cluster, job,
and user. Alibaba’s PAI [98] contributes to this discourse by
analyzing the challenges encountered within their clusters
from both temporal and spatial viewpoints. Different from
them, we focus on the characteristics of LLM workloads.
Fault Tolerance Systems. Fault tolerance is a crucial con-
sideration across various disciplines. In the context of LLM
systems, Varuna [15], Bamboo [89], and Oobleck [46] fo-
cus on the fast recovery from failures in cloud spot in-
stance scenarios. Gemini [97] facilitates swift recovery
through CPU memory checkpointing. In addition, a body
of research works dedicated to GPU-related failure analy-
sis [35, 47, 61, 72, 87, 90, 91, 110], while several deep learning
schedulers [44,57,108] consider fault tolerance. Furthermore,
a series of studies have profiled [33, 34, 50, 63, 70, 112] or
diagnosed [36, 38, 39, 60, 88, 106, 109] potential performance
bottlenecks within RDMA or intra-host network communi-
cation. We provide a thorough analysis of the failure events
in LLM workloads and propose a LLM-involved diagnosis
system.

C Resource Links
InternLM Links
Project: https://github.com/InternLM
Trace: https://github.com/InternLM/AcmeTrace
System: https://github.com/InternLM/InternEvo
Model: https://huggingface.co/internlm

https://github.com/InternLM
https://github.com/InternLM/AcmeTrace
https://github.com/InternLM/InternEvo
https://huggingface.co/internlm
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