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ABSTRACT

Modern GPU clusters support Deep Learning training (DLT)

jobs in a distributed manner. Job scheduling is the key to

improve the training performance, resource utilization and

fairness across users. Different training jobs may require

various objectives and demands in terms of completion time.

How to efficiently satisfy all these requirements is not exten-

sively studied.

We present Chronus, an end-to-end scheduling system

to provide deadline guarantee for SLO jobs and maximize

the performance of best-effort jobs. Chronus is designed

based on the unique features of DLT jobs. (1) It leverages the

intra-job predictability of DLT processes to efficiently profile

jobs and estimate their runtime speed with dynamic resource

scaling. (2) It takes advantages of the DLT preemption fea-

ture to select jobs with a lease-based training scheme. (3) It

considers the placement sensitivity of DLT jobs to allocate

resources with new consolidation and local-search strategies.

Large-scale simulations on real-world job traces show that

Chronus can reduce the deadline miss rate of SLO jobs by

up to 14.7×, and the completion time of best-effort jobs by

up to 19.9×, compared to existing schedulers. We also imple-

ment a prototype of Chronus atop Kubernents in a cluster

of 120 GPUs to validate its practicability.
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1 INTRODUCTION

Past years have witnessed the tremendous progress of Deep

Learning (DL) in many artificial intelligence tasks. The high

performance of state-of-the-art DL models is attributed to

the sophisticated algorithms, complex network structures

with huge numbers of parameters. Training such a model

requires vast amounts of GPU resources. Consequently, IT

corporations, research institutes and cloud providers build

large-scale GPU clusters to ease the development of DL train-

ing (DLT) jobs. A scheduler is necessary to manage DLT jobs

and allocate resources in a GPU cluster.

DLT jobs in GPU clusters have various demands, based on

which they can be coarsely classified into two categories. (1)

SLO jobs [7, 30]: job execution time is one common Service

Level Objective (SLO) for GPU users. With the successful

commercialization of DL technology, DLT jobs related to

product development raise high SLO requirements for the

completion time. DL competitions and research paper sub-

missions also call for such SLO demand. (2) Best-effort jobs

[53]: These are exploratory jobs for debugging and testing

purposes. They do not have deadline requirements but are

expected to complete as soon as possible. As common GPU

clusters support the mixture of SLO jobs and best-effort jobs,

the problem we attempt to address is: how can a DL scheduler
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satisfy various demands from different types of jobs, i.e., guar-

anteeing the completion time of SLO jobs, while maximizing

the performance of best-effort jobs?

Unfortunately, existing DL schedulers lack explicit sup-

ports for SLO requirements. They are mainly designed for

the improvement of job performance [16, 21, 53, 54, 56] or

fairness [4, 28, 34], thus incapable of guaranteeing the job

completion before the deadlines. To our best knowledge,

there are only two works considering the scheduling of SLO

jobs for DL training. HyperSched [30] mainly focuses on the

performance improvement of Hyper-Parameter Optimiza-

tion jobs with deadlines. It cannot be applied to other general

DLT jobs. GENIE [7] automatically identifies the optimal

resource allocation for SLO jobs. It requires the modifica-

tions of the underlying DL framework (i.e., tensorflow [1]).

It makes decisions about the number of GPUs for each job,

while ignoring the resource requirements of users. Moreover,

these two works do not consider the mixture of SLO and

best-effort jobs, which matches the realistic scenario.

Prior works also proposed deadline-aware schedulers for

traditional big data jobs [9, 29, 39, 48]. They estimate the

completion time of each job from online profiling [11] or

offline prediction [22]. Then they formalize the resource and

SLO requirements as an optimization problem, and leverage

the Mixed Integer Linear Programming (MILP) solver [51]

to make scheduling decisions. These designs are not tailored

to but can be extended to the scheduling of DLT jobs. Ad-

ditionally, DLT jobs exhibit certain unique features distinct

from big data workloads.

Consideration of these features could bring new opportu-

nities to further improve the efficiency and effectiveness of

deadline-aware schedulers specifically for DLT jobs. This is

what we aim to explore in this paper.

We present Chronus, a novel DL scheduler to support the

deadline guarantee of SLO jobs, while minimizing the aver-

age latency of best-effort jobs. Chronus achieves these goals

via three key mechanisms, based on three unique characteris-

tics of DLT jobs. First,DLT jobs exhibit very high intra-job pre-

dictability [41, 53]. They perform repetitive iterations with

constant behaviors and duration. Besides, the runtime speed

of distributed training workloads with arbitrary GPUs can

be accurately modeled and estimated [7]. Similar to [38, 41],

we leverage some profiling techniques to estimate the com-

pletion time of a DLT job with any amount of GPU resources

using at most two GPU nodes. We adopt a dynamic scaling

mechanism to strike a balance between profiling latency and

resource utilization.

Second, DLT jobs naturally support the preemption schedul-

ing with acceptable overhead compared to the execution time

[16, 34, 35, 43]. In contrast, there are no general mechanisms

to preempt arbitrary big data jobs seamlessly and efficiently

[5, 31, 40]. Inspired by this feature, we adopt a lease-based

training scheme. A lease term refers to a fixed period of

time that a DLT job can exclusively occupy the requested

resources. Then the completion of a DLT job requires a num-

ber of lease terms. We design a job selection technique based

on this scheme. It discretizes the execution time of a SLO

job into multiple lease terms, and utilizes the MILP solver to

decide when each lease term should be assigned. Compared

to [39, 48] for big data scheduling, our adoption of the lease-

based training with preemption increases the scheduling

elasticity and enables the satisfaction of more SLO require-

ments. Besides, our method also supports the specification

and fulfillment of soft deadline requirements in addition to

strict ones, giving users more flexibility.

Third, DLT jobs are more placement-sensitive [34, 53]. The

performance of a job highly depends on the affinity of the

allocated GPU resources. Based on this feature, we propose

a GPU allocation mechanism, to determine where each job

should run after the lease term assignment. This strategy

considers the impact of the GPU resource topology on our

scheduling goals. We design a round-up method to ensure

the selected SLO jobs run on consolidated resources, which

can decrease the possibility of deadline violations. We also

propose a local-search placement algorithm to discover an

effective solution for the latency reduction of best-effort jobs.

To evaluate Chronus, we perform large-scale simulations

on two real-world DL job traces (Philly-trace from a Mi-

crosoft cluster [21] and Helios-trace from a SenseTime clus-

ter [19]). Experimental results show that Chronus can re-

duce the deadlinemiss rate by up to 14.7×. Compared to other

deadline-aware solutions, Chronus reduces the latency of

best-effort jobs by up to 19.9×. To further demonstrate the

practicality of our design, we implement Chronus as a cus-

tom scheduler in Kubernetes [26], and deploy it on a cluster

of 120 GPUs, running a wide range of common DL models

(e.g., VGG16 [44], AlexNet [25], MobileNet [18], InceptionNet

[46], ResNet [17], GAN [15], Bert [12], RL [24, 45]). Evalua-

tions suggest that Chronus guarantees the deadline of SLO

jobs and maintains the latency of best-effort jobs.

2 MOTIVATION

2.1 SLO Requirement in DL Training

Similar to conventional datacenters for big data jobs [9, 39,

48], a GPU cluster is also required to support the mixture of

SLO jobs and best-effort jobs. SLO jobs are usually produc-

tion and business-related. They are highly expected to be

completed before certain deadlines, and the violations can

incur huge financial loss. Best-effort jobs are mainly research-

exploratory, which are more sensitive to job latency instead

of SLO requirements.
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To unveil the SLO requirement of DLT jobs, we conduct a

user survey
1
collected from 103 participants (52% students,

16% researchers, and 32% engineers). According to this sur-

vey, we identify the following observations.

Observation 1: SLO jobs and best-effort jobs coexist inmodern

GPU clusters.

We observe that more than 60% participants mainly submit

DLT jobs to their GPU clusters with explicit expectation of

the job completion time. Additionally, 96% participants have

the experience of submitting non-emergent/best-effort jobs

for trial-and-error.

Observation 2: Users can tolerate SLO violations of DLT jobs

to certain extent.

About 3%, 12%, 21% and 22% participants can accept 0%, 5%,

10% and 20% deadline delay respectively when the cluster

supports the SLO guarantee for DLT jobs. This suggests

the scheduler can manage the deadlines of SLO jobs at the

granularity of minutes or even hours.

Observation 3: It is not acceptable that best-effort jobs deprive

SLO jobs of their GPU resources, and cause deadline violations.

Over 32% participants cannot accept that best-effort jobs

occupy the GPU resources originally reserved for SLO jobs.

About 55% participants allow best-effort jobs to run simulta-

neously when they have no impacts on the completion time

of the SLO jobs.

Observation 4: Users have difficulties in estimating the exe-

cution time of their DLT jobs.

Nearly 80% participants predict the job completion time

with at least 10% error, and 40% participants have at least

25% prediction error. Notably, 5% participants suffer from

100% prediction error. As the duration of a DLT job can be

up to several days, a small prediction error could result in

long time deviations, significantly affecting the system oper-

ations. Also, the completion time of a DLT job varies under

different scheduling algorithms and cluster states. Hence, it

is infeasible for users to accurately estimate job completion

time before scheduling.

2.2 Challenges of SLO Enforcement

Existing deadline-aware schedulers [9, 29, 39, 48] are not

tailored to the characteristics of DLT jobs. There are still

some unsolved problems when applying them to DLT job

scheduling, as described below.

First, job completion time is prerequisite for deadline-

aware scheduling. Some big data schedulers [10, 23, 39, 48]

adopt offline methods (e.g., history trace, user specification,

analytical model prediction) to obtain such information. This

is not effective for DLT jobs because the runtime of DLT

jobs is correlated with more factors, e.g., resource topology,

1
More details about the survey are available at https://github.com/S-Lab-

System-Group/ChronusArtifact

model feature, batch size, iterations. History trace and user

specifications fail to reflect the impact of these factors (Ob-

servation 4). Analytical models cannot estimate the runtime

speed of models with unknown network structures or al-

gorithms. Some other big data schedulers [11, 20] perform

online profiling to estimate the job completion time. How-

ever, it requires to reserve large amounts of GPU resources

for profiling, especially for large-size jobs. This can cause

huge resource waste.

Second, job selection is a critical step in guaranteeing dead-

lines of SLO jobs and reducing the latency of best-effort jobs.

Prior solutions [9, 29, 48] adopt the MILP solver to discover

the best decision for a batch of SLO jobs. They can be en-

hanced from two perspectives. First, they do not consider

the operation of job preemption, which can actually improve

the possibilities of SLO satisfaction. However, frequent pre-

emption can bring large overhead to the job performance.

How to appropriately leverage this feature to improve the

scheduling efficiency is not explored yet. Second, these solu-

tions only consider strict deadlines for SLO jobs. According

to our Observation 2, some users are tolerant with proper

violations of deadlines. How to manage and enforce such

“soft” deadlines for certain jobs is challenging.

Third, the runtime speed of a distributed DLT job highly

depends on the topology of allocated GPUs. The job gener-

ally runs faster on consolidated GPUs due to the low cost

of local communications. However, existing deadline-aware

schedulers [9, 29, 39, 48] only consider the amount of avail-

able resources while ignoring their topology. Hence, if a job

is justified by the MILP solver to meet the SLO requirement

in the consolidated manner, it can still possibly miss the

deadline when the placement is actually not consolidated. It

is non-trivial to consider the impact of resource allocation

on the scheduling decision.

3 SYSTEM DESIGN

We propose Chronus, a novel DL scheduler to enforce the

deadlines of SLO jobs and reduce the latency of best-effort

jobs. We give assumptions and overview in Sec 3.1, followed

by the description of each component in Sec 3.2 – 3.4.

3.1 Overview

We make several assumptions about DLT jobs and GPU clus-

ter in our system. (1) A DLT job is considered as completed

when it finishes a fixed number of training iterations speci-

fied by the user. (2) Each GPU has enoughmemory to host the

entire model of the DLT job. (3) Training with the model par-

allelism technique is not considered inChronus (4)We focus

on the homogeneous GPU resources and physical networking

connections. Our design can be extended to heterogeneous

clusters as well (discussed in Sec. 7).
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Figure 1: Workflow of Chronus.

Fig. 1 shows the workflow of Chronus. It consists of

three main components. (1) A Profiler filters out short-

term or buggy DLT jobs, and estimates the completion time

of long-term jobs submitted by cluster users ( 1 ). (2) After

the profiling is completed, a Selector performs admission

control to check and label each SLO job as guaranteed (the

user-specified deadline is achievable), or unguaranteed (the

deadline is hard to be satisfied) ( 2 ). For guaranteed SLO jobs,

an MILP solver is utilized to identify the jobs that need to be

scheduled ( 3 ). For unguaranteed SLO jobs and best-effort

jobs, the Shortest-Remaining-Time-First (SRTF) algorithm is

used to select jobs ( 4 ). (3) An Allocator distributes GPUs
to the selected jobs. For the guaranteed SLO jobs, it adopts

a round-up technique ( 5 ) to discover a consolidation solu-

tion for GPU application. For other jobs selected by SRTF,

it performs a local search algorithm to identify an effective

placement solution ( 6 ).

Chronus can be deployed in existing GPU clusters. It logi-

cally partitions the cluster into three parts: a Profiling cluster

is used by the Profiler to collect runtime information of

DLT jobs; a Guaranteed cluster hosts the guaranteed SLO

jobs and enforces their deadlines; a Spot cluster improves

the latency of best-effort jobs and unguaranteed SLO jobs in

an opportunistic manner. The capacities of these clusters are

dynamically tuned based on the job density.

3.2 Profiler

Users submit DLT jobs to the cluster with relevant informa-

tion (GPU demands, deadlines, numbers of training itera-

tions). Then the Profiler runs these jobs in the Profiling

cluster for a fixed time𝑇𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 . It adopts the First Come First

Serve (FCFS) policy. Short-term jobs and buggy jobs can be

completed within 𝑇𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 without the need for scheduling.

For long-term jobs, the Profiler obtains the duration of

one iteration, and then estimates the total completion time.

Such a profiling mechanism is also adopted in prior DL

schedulers [16, 34]. However, some critical problems remain

unsolved, e.g., how many resources should be allocated for

profiling, how to handle the shortage of GPU resources. We

leverage several approaches to address these problems and

achieve more efficient profiling.

3.2.1 Submission control. It is common that users may sub-

mit a large number of DLT jobs concurrently or within a

very short time (Fig 5(b)). This can impose heavy burdens to

the Profiling cluster, causing much longer queuing delays for

pending jobs. Previous works never consider such scenarios.

To handle the issue of bursty job submission, our Profiler
adopts a submission control policy to restrict the maximum

amount of resources requested by each user with a fixed

time interval. In Sec 5.1, we will show this mechanism can

remarkably reduce the time cost of profiling DLT jobs.

3.2.2 Reducing profiling resources. Previous schedulers [16,
34] profile DLT jobs using the same amount of requested

GPUs, which requires a large size of Profiling cluster to

handle large-scale DLT jobs. This will decrease the size of

the main cluster, and the overall resource utilization. To

overcome this limitation, we propose to convert every multi-

node distributed job into a two-node and single-node jobs.

Then we can use at most two nodes to profile each job with

arbitrary GPU demands and estimate its runtime speed [55].

Specifically, a DLT job is composed of many iterations.

Fig. 2 shows the average duration with the standard de-

viation of one iteration for different DL models and GPU

demands. We observe the runtime speed of the same DLT

task is relatively stable. Hence, we only need to measure the

duration for a small number of iterations, and then estimate

the overall execution time based on the number of training

iterations provided by the user. According to the analytic

model in [7], for a distributed DLT job with 𝑛 GPU nodes,

the execution time of each iteration can be formulated as

𝑡𝑛 = 𝑡𝑐 + 𝑙𝑜𝑔2 (𝑛)𝑡𝑜 , where 𝑡𝑐 is the computation time and 𝑡𝑜
is the communication time. Hence, we can measure the itera-

tion time of the job on one node as 𝑡1 = 𝑡𝑐 , and on two nodes

as 𝑡2 = 𝑡𝑐 + 𝑡𝑜 . From these two results, we can derive the
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Figure 2: Execution time per iteration for variousmod-

els and requested GPUs.

iteration time on 𝑛 nodes: 𝑡𝑛 = 𝑡1 + 𝑙𝑜𝑔2 (𝑛) (𝑡2 − 𝑡1) without
actually running it.

3.2.3 Dynamic scaling of Profiling cluster capacity. Past works
adopted fixed sizes of the Profiling cluster. However, a smaller

cluster can lead to the increased pending time of submit-

ted jobs, while a larger profiling cluster can decrease the

size of the main cluster, and affect the performance of long-

term jobs. To balance the trade-off between stability and

resource utilization, we propose to dynamically adjusts the

capacity of the Profiling cluster based on the density and

requested resources of submitted DLT jobs. Specifically, we

model the Profiler cluster as a queuing system, where the ar-

rival rate of submitted jobs is 𝜆. To guarantee the stability of

this queuing system, we need to ensure the cluster capacity

𝐶𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 ≥ 𝜆𝑇𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 . In our design, 𝐶𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 is updated every

hour to adapt to the job submission trend. For each update,

we collect the submitted jobs over the past one hour and

calculate the average GPU numbers to estimate 𝜆. Then we

can identify the lower bound of 𝐶𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 .

3.3 Job Selector

The primary function of the Selector is to produce resource-
time scheduling decisions for SLO jobs and best-effort jobs.

It adopts a lease-based training scheme, and uses an MILP

solver and SRTF policy to select jobs.

3.3.1 Formulation of SLO requirements. Previous deadline-
aware schedulers [9, 29, 39, 48] only consider the strict dead-

line scenario, i.e., the job must be completed before the spe-

cific moment. Based on our Observation 2 in Sec. 2.1, it is

necessary to enable the soft deadlines, so the DLT jobs are

allowed to complete after the deadlines with certain penalty.

We introduce a unified reward function to formulate dif-

ferent types of requirements (strict SLO, soft SLO and best-

effort). Users can specify such functions to the GPU cluster

when submitting the jobs. The reward is modeled as a step

function (ranging between 1 and 100), as shown in Fig. 3.

For best-effort jobs, we expect them to be completed as soon

as possible without any deadlines. So the reward value is

always constant (= 1) regardless of the completion time. For

Figure 3: Reward functions for different types of jobs.

strict SLO jobs, they must be completed before the dead-

lines (= 100). Otherwise, the reward drops to the smallest

value (= 1) immediately. For soft SLO jobs, the reward drops

gradually with longer delays of completion time
2
.

3.3.2 Admission control. It is possible that some users spec-

ify unreasonable deadline requirements for their jobs such

that the cluster can never satisfy them. Malicious users may

also intentionally abuse the SLO service to affect the sched-

uling operation and other jobs’ performance. We introduce

an admission control mechanism to handle these cases. It is

triggered right after the profiling phase. For all the profiled

SLO jobs, the admission control calls the MILP solver in Sec.

3.3.4 to check if there are any solutions to meet the SLO

requirements. A job with a feasible solution will be labeled

as a guaranteed SLO job, and placed in the SLO queue. Oth-

erwise, it will be labeled as an unguaranteed SLO job, and

placed in the best-effort queue mixed with the best-effort

jobs
3
. Meanwhile, the user will receive the notification that

the deadline cannot be satisfied, and the job will be treated

in a best-effort manner.

3.3.3 Lease-based training. We divide each DLT job into

multiple time periods (i.e., lease terms) with the same length.

A job can be executed only when it obtains a lease term from

the scheduler. A renewal is required when the lease expires.

Upon a successful renewal, the job can continue its execution.

Otherwise, it will be suspended and yield the resources.

We introduce two types of leases for the Selector: the
SLO lease is adopted in the Guaranteed cluster for guaran-

teed SLO jobs; the BE lease is used in the Spot cluster for

unguaranteed SLO jobs and best-effort jobs. The Selector
distributes SLO and BE leases to the corresponding jobs at

each scheduling cycle, when the leases expire. For ease of

management, we set the SLO lease length as an integral mul-

tiple of the BE lease length. So BE lease expiration does not

necessarily lead to the suspension of jobs in SLO lease terms,

2
The reward function for soft SLO jobs can have other expressions. We can

always approximate any function to the step function in our scheduler.

3
It is possible to use binary search to obtain reasonable completion time for

these jobs and then label them as guaranteed SLO jobs. However, this will

incur a large overhead for calling the MILP solver multiple times. Hence, it

is not adopted in our design.
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Figure 4: Illustration of two types of lease terms.

while SLO lease expiration happens concurrently with BE

lease expiration. Fig. 4 shows these two types of leases.

3.3.4 Selecting guaranteed SLO jobs. We model the job se-

lection task as an MILP problem. Then the MILP solver can

be used to perform admission control (Sec. 3.3.2) and manage

SLO lease terms for all guaranteed SLO jobs. At each SLO

scheduling cycle, the Selector aggregates all guaranteed

SLO jobs and makes decisions to update job status and assign

cluster resources.

Formally, we consider a set of 𝑁 guaranteed SLO jobs:

J = { 𝑗1, 𝑗2, 𝑗3 ... 𝑗𝑁 } and𝑀 available GPUs at one scheduling

cycle. Each job 𝑗𝑖 requires 𝐺𝑖 GPUs, with the runtime 𝑅𝑖
estimated by the Profiler. We denote the reward function

of the job 𝑗𝑖 as a step function 𝑓 (⟨𝐷1,𝑖 ,𝑉1,𝑖⟩, ..., ⟨𝐷𝑃𝑖 ,𝑖 ,𝑉𝑃𝑖 ,𝑖⟩),
where the reward value is 𝑉𝑝,𝑖 when the job is completed

right before 𝐷𝑝,𝑖 . Note the strict SLO is a special case of soft

SLO, where the step function has only two possible reward

values. Assuming the SLO lease length is𝑇𝑙 , then the number

of required lease terms to finish job 𝑗𝑖 is 𝑅𝐿𝑖 = ⌈𝑅𝑖/𝑇𝑙 ⌉. The
number of required lease terms to complete this job before

each deadline is 𝐷𝐿𝑝,𝑖 = ⌊𝐷𝑝,𝑖/𝑇𝑙 ⌋, where 𝑝 ∈ {1, 2, ...𝑃𝑖 }.
We use a binary variable 𝑥𝑘,𝑖 to denote whether 𝑗𝑖 obtains

the 𝑘𝑡ℎ lease, and a binary variable 𝑠𝑝,𝑖 to denote whether

𝑗𝑖 hits the corresponding 𝑝𝑡ℎ deadline. The MILP solver can

yield a solution for the following objective and constraints.

max

𝑁∑
𝑖=1

𝑃𝑖∑
𝑝=1

𝑠𝑝,𝑖 ∗𝑉𝑝,𝑖 (1)

subject to:

𝑥𝑖
𝑘
, 𝑠𝑝,𝑖 ∈ {0, 1},∀𝑝, 𝑘,∀𝑖 ∈ [1, 𝑁 ] (2)

𝑁∑
𝑖=1

𝑥𝑖
𝑘
∗ 𝑅𝑖 ≤ 𝑀,∀𝑘 (3)

𝐷𝐿𝑝,𝑖∑
𝑘=1

𝑠𝑝,𝑖 ∗ 𝑥𝑖𝑘 = 𝑠𝑝,𝑖 ∗ 𝑅𝐿𝑖 ,∀𝑖 ∈ [1, 𝑁 ] (4)

𝑃𝑖∑
𝑝=1

𝑠𝑝,𝑖 = 1,∀𝑖 ∈ [1, 𝑁 ] (5)

Objective (1) is to maximize the total reward values of all

guaranteed SLO jobs. Constraint (3) ensures the number of

occupied GPUs does not exceed the cluster capacity. Con-

straint (4) ensures that all guaranteed SLO jobs should be

completed before (soft) deadlines. Constraint (5) ensures each

guaranteed SLO job is assigned with one feasible solution to

meet the (soft) deadline.

Based on the solution from the solver, the Selector iden-

tifies the SLO jobs that need to be scheduled at this cycle.

Meanwhile, it also identifies the necessary GPU nodes to

host these selected jobs, which form a Guaranteed cluster.

The rest jobs will be placed in a SLO queue for consideration

at the next SLO scheduling cycle. The length of an SLO lease

is of vital importance to the efficiency of the MILP solver. A

shorter SLO lease introduces too frequent preemption oper-

ations and longer MILP solver latency, while a longer SLO

lease can reduce the scheduling elasticity. We empirically set

the length of a SLO lease term as 20 minutes.

The MILP solver introduces certain latency when solving

the above problem, which can delay the job execution. To

minimize the impact of such delays, we cache the solution

of the last scheduling cycle. If the MILP solver fails to get

a new solution for this cycle within a fixed time limit, we

call the MILP solver from the cached solution to reduce the

search space and computation overhead.

3.3.5 Selecting best-effort and unguaranteed SLO jobs. The
Selector adopts the Shortest-Remaining-Time-First (SRTF)

algorithm to select jobs from the best-effort queue and al-

locate BE leases to them for execution in the Spot cluster.

We empirically set the length of a BE lease term the same as

𝑇𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 = 300𝑠 , which is one fourth of a SLO lease term.

The Spot cluster is built from the remaining resources

after the establishment of the Profiling cluster and Guaran-

teed cluster. It is worth noting that when a guaranteed SLO

job completes its execution, there is still a amount of time

left in the current SLO lease. To avoid the resource waste,

the resources yielded from this completed SLO job will be

adjusted to the Spot cluster, and considered at the next BE

scheduling cycle.

3.4 Allocator

The Allocator is responsible for allocating resources to the

jobs identified from the Selector. To improve the job perfor-

mance, an optimal strategy always follows the consolidation

principle, i.e., deploying the job on as few nodes as possible.

We utilize this strategy with a round-up solution to allocate

resources for guaranteed SLO jobs (Sec. 3.4.1).

However, when more jobs are deployed in the cluster,

there will be more GPU fragmentation, making it harder to

achieve consolidation for newly submitted jobs. To deal with

this issue, we propose a local search algorithm to place jobs

in the best-effort queue (Sec. 3.4.2).

3.4.1 Placing guaranteed SLO jobs. Chronus performs place-

ment for a batch of SLO jobs at the end of each SLO schedul-

ing cycle. Consider a homogeneous GPU cluster with 8-GPU
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compute nodes. We denote 1-GPU, 2-GPU, 4-GPU and 8𝑛-

GPU jobs (𝑛 ∈ 𝑁 +) are consolidation-friendly, and jobs with

other numbers of GPUs are consolidation-hostile. We say a

placement solution has the consolidation feature, if each job

with 𝑛𝑖 GPUs is deployed on ⌈𝑛𝑖/8⌉ nodes. Then we have

the following proposition:

Proposition 1. Assume the GPU cluster has𝑚 free nodes

and each node has exact 8 GPUs. The pending queue only con-

tains consolidation-friendly jobs. The total number of requested

GPUs from all these jobs is no greater than 8𝑚. Then there must

exist a feasible solution that achieves consolidation placement.

Proof. We construct a solution to fulfill the requirement.

We first allocate the GPU resources to 8𝑛-GPU jobs in a

consolidation manner such that there is no GPU fragmenta-

tion on the allocated nodes. Then we split the remaining𝑚′

nodes into 2𝑚′ 4-GPU nodes, and use some nodes to satisfy

the consolidation placement of 4-GPU jobs. Next, we split

the remaining𝑚′′ 4-GPU nodes into 2𝑚′′ 2-GPU nodes to

host 2-GPU jobs with consolidation. Finally, the remaining

resources can be allocated to 1-GPU jobs. □

When all the guaranteed SLO jobs are consolidation-friendly,

we can find a consolidation placement solution from Proposi-

tion 1. Due to the existence of consolidation-hostile jobs, it is

possible that there are enough resources for all the jobs but

a consolidation solution does not exist. To handle this case,

we convert each consolidation-hostile job to a consolidation-

friendly one by rounding up the number of its requested

GPUs to {1, 2, 4, 8𝑛}. Hence, Constraint 3 can be changed to:

𝑁∑
𝑖=1

𝑥𝑖
𝑘
∗ RoundUp(𝑅𝑖 ) ≤ 𝑀,∀𝑘 (6)

Although this round-up operation may increase the total

of demanded resources slightly (consolidation-hostile jobs

are not common), it ensures the existence of a consolida-

tion solution at each SLO scheduling cycle, and significantly

improve the allocation efficiency. With the solution from

Proposition 1, each guaranteed SLO job can run at very fast

speed as in the Profiling cluster. Note that this round-up

technique is general to other cluster configurations: a node

with an arbitrary number of GPUs can always be decom-

posed into some 2
𝑛
-GPU nodes (e.g., 6 = 4 + 2), and then this

technique can be applied.

3.4.2 Placing best-effort and unguaranteed SLO jobs. For
large jobs in the best-effort queue which request 16 or more

GPUs, the Allocator also uses the round-up-based consol-

idation placement (Sec. 3.4.1). For small jobs in the best-

effort queue, we design a novel local search algorithm to

reduce their latency. It can effectively handle the placement

of consolidation-hostile jobs.

Consider a job 𝑗𝑖 with𝐺𝑖 GPUs. Its placement solution set

is denoted as A𝑖 , containing all the possible solutions. 𝐴
∗
𝑖 is

denoted as the optimal solution that meets the consolidation

requirement. We use 𝑅𝑇𝑆 ( 𝑗𝑖 , 𝐴𝑖 ) to denote the runtime speed

of 𝑗𝑖 under a solution 𝐴𝑖 ∈ A𝑖 . Then we define an allocation

reward function 𝑅𝑊 (Eq. 7) to quantify the correlation be-

tween job performance and placement topology. A higher

𝑅𝑊 ( 𝑗𝑖 , 𝐴𝑖 ) indicates job 𝑗𝑖 runs faster under the solution 𝐴𝑖 .

𝑅𝑊 ( 𝑗𝑖 , 𝐴𝑖 ) = 𝐺𝑖 ∗
𝑅𝑇𝑆 ( 𝑗𝑖 , 𝐴𝑖 )
𝑅𝑇𝑆 ( 𝑗𝑖 , 𝐴∗𝑖 )

(7)

We also define the potential of a job 𝑗𝑖 , to denote how

much it prefers the consolidation solution:

𝑝𝑜𝑡 ( 𝑗𝑖 ) = max

𝐴𝑖 ∈A𝑖
𝑅𝑊 ( 𝑗𝑖 , 𝐴𝑖 ) − min

𝐴𝑖 ∈A𝑖
𝑅𝑊 ( 𝑗𝑖 , 𝐴𝑖 ) (8)

Given a set J of jobs, we exhaustively search for the op-

timal placement solution of 𝐾 jobs with higher potential,

which are more placement-sensitive. Then we place the rest

jobs in a quasi-consolidation manner. Alg. 1 describes the

search process. Specifically, we profile different placement so-

lutions of each job and calculate the corresponding potential.

Then we sort the jobs by their potential (Line 1). We select

top-𝐾 jobs 𝐽 𝑠 to ensure the entire search space of these 𝐾

jobs is smaller than a predefined threshold |𝑆 | (Line 2). Next,
we consider all possible combined placement solutions A𝑠 of
these 𝐾 jobs (Line 6). For each 𝐴𝑠 ∈ A𝑠 , we allocate the rest
jobs 𝐽𝑞 with a quasi-consolidation solution 𝐴𝑞 (Line 8): we

first try to find a feasible consolidation solution for each job.

If no solution exists, we will allocate this job to as few nodes

as possible. Finally we compute the sum of the 𝑅𝑊 values of

all the jobs under𝐴 = 𝐴𝑠𝑈𝐴𝑞 (Line 10). The optimal solution

AJ is the one with the largest 𝑅𝑊 value (Lines 11-12).

Algorithm 1: Local Search Placement Strategy.

Input : Job set J , job potential 𝑃 ,

allocation set A, search space S
Output :Optimal solution set AJ
Sort jobs in J in descending order by their 𝑝𝑜𝑡 (·);
𝐾 ← argmax𝑘 (

∏𝑘
𝑖=1 |A𝑖 | ≤ |𝑆 |);

𝐽 𝑠 ← 𝑗1, 𝑗2, ... 𝑗𝐾 ;

𝐽𝑞 ← 𝑗𝐾+1, 𝑗𝐾+2, ... 𝑗𝑁 ;
R∗ ← 0,AJ ← {} ;
A𝑠 ← {( 𝑗1, 𝐴1), ( 𝑗2, 𝐴2), ..., ( 𝑗𝐾 , 𝐴𝐾 )}|𝐴1 ∈ A1, 𝐴2 ∈
A2, ..., 𝐴𝐾 ∈ A𝐾 }
for 𝐴𝑠 ∈ A𝑠 do

𝐴𝑞 ← Quasi-Consolidation(𝐽𝑞);

𝐴← 𝐴𝑠
⋃
𝐴𝑞 ;

𝑅← ∑
( 𝑗𝑖 ,𝐴𝑖 ) ∈𝐴 𝑅𝑊 ( 𝑗𝑖 , 𝐴𝑖 );

if 𝑅 ≥ R∗ then
R∗,AJ ← 𝑅,𝐴;

return AJ
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4 EXPERIMENTAL SETUP

We implement a trace-driven simulator to simulate GPU clus-

ters with different schedulers. It has 10,865 lines of python

code
4
. We implement Chronus in our simulator with 2,431

lines of python code. It adopts Gurobi 9.1 [8] as the back-

end MILP solver. We also implement Chronus on the real

Kubernetes scheduling system, as detailed in Sec. 5.5.

4.1 Testbed

We simulate two homogeneous GPU clusters: a 120-node

cluster (C120) and 96-node cluster (C96). Each node con-

tains 8 GPUs. We adopt two real-world DLT job traces for

simulation. The Helios trace is from a production cluster in

SenseTime [19]. It is collected over two weeks from 14th -

27th April 2020. The Philly trace is from Microsoft datacen-

ter [21]. We select a 14-day trace from 12th - 25th October

2017. Fig. 5(a) shows the cumulative distributions of the job

duration in the two traces. We observe that Helios has a

higher ratio of short-term jobs than Philly. Fig. 5(b) shows

the amount of requested GPUs per hour in the two traces.

They exhibit an obvious bursty submission feature.

(a) Duration distribution (b) Submission rate

Figure 5: Trace characterization.

For each job, our traces contain the information of sub-

mit time, duration, GPU demand, user name, job type (Strict

SLO/Soft SLO/BE), andmodel type (VGG, ResNet, etc).We ob-

tain the runtime speed of jobs with different GPU topologies,

and their preemption overhead via running the correspond-

ing type of model on actual GPUs. Since the jobs in these two

traces do not have explicit deadline information, we adopt

the following method to generate deadlines for SLO jobs.

Inspired by [23, 39], for a strict SLO job with the duration of

𝑅𝑖 , we choose a random value in [1.2𝑅𝑖 , 2𝑅𝑖 ] as its deadline.
For a soft SLO job, we follow the same method to generate

the first deadline 𝐷1,𝑖 . Based on the user survey, we specify

another three soft deadlines as 1.1𝐷1,𝑖 , 1.2𝐷1,𝑖 , 1.5𝐷1,𝑖 with

reward values of 80, 50, 20, respectively.

We synthesize seven workloads from the two traces, as

summarized in Table 1. First, we filter out the short-term

jobs which can be completed in the Profiling cluster and

are never scheduled in the main cluster (Short). Second, we

4
The implementation code is available at https://github.com/S-Lab-System-

Group/ChronusArtifact

consider the workloads with all strict SLO jobs (H_SLO and

P_SLO). Third, we construct workloads mixed with strict

SLO and best-effort jobs (H_MIX1 and P_MIX1). Finally, we

build workloads with strict SLO, soft SLO and best-effort

jobs (H_MIX2 and P_MIX2).

Table 1: Summary of workloads in our experiments

Workload Strict/Soft/BE (%) Trace Cluster # of jobs

Short 0 / 0 / 100 Helios – 5,735

H_SLO 100 / 0 / 0 Helios C96 6,599

H_MIX1 70 / 0 / 30 Helios C96 6,599

H_MIX2 30 / 60 / 10 Helios C96 6,599

P_SLO 100 / 0 / 0 Philly C120 30,940

P_MIX1 70 / 0 / 30 Philly C120 30,940

P_MIX2 30 / 60 / 10 Philly C120 30,940

4.2 Evaluation Metrics.

We use the following metrics to quantify the performance

and efficiency of DLT scheduling.

WeightedDeadlineMissRate (wDMR).This is a standard

metric to measure the enforcement of SLO requirements by

a scheduler. Consider a set 𝐽𝑠𝑙𝑜 of SLO jobs and each job 𝑗𝑖
obtains a reward value 𝑅𝑊 ( 𝑗𝑖 ) based on its SLO requirement

(Fig. 3). Then wDMR is defined in Eq. 9, where 𝑅𝑊𝑚𝑖𝑛 = 1

and 𝑅𝑊𝑚𝑎𝑥 = 100 are the bounds of the reward values.

𝑤𝐷𝑀𝑅 =
1

𝐽𝑠𝑙𝑜

∑
𝑗𝑖 ∈𝐽𝑠𝑙𝑜

𝑅𝑊 ( 𝑗𝑖 ) − 𝑅𝑊𝑚𝑖𝑛

𝑅𝑊𝑚𝑎𝑥 − 𝑅𝑊𝑚𝑖𝑛

(9)

JobCompletionTime (JCT).Wemeasure the average com-

pletion time of best-effort jobs for their performance. A small

JCT indicates the cluster has higher efficiency.

4.3 Baselines

To fully demonstrate the advantages of Chronus, we se-

lect six popular scheduling systems from prior works for

comparisons. They can be classified into three categories.

General scheduler: (1) Yarn-CS [49] adopts the static quota

and FCFS algorithm to manage jobs and resources. In our

implementation, we configure the static quota according to

the ratio between SLO and best-effort jobs.

Deadline-aware scheduler: (2) The Earliest-Deadline-First

(EDF) algorithm [3] is a representative solution to maintain

SLO requirements in real-time systems. In our implementa-

tion, SLO jobs are allowed to preempt best-effort jobs. To

prevent the abuse of the SLO service, we disable the preemp-

tion of SLO jobs. (3) 3Sigma [39] leverages the MILP solver

to schedule SLO and best-effort jobs in big data clusters. It

is not effective in supporting the preemption between SLO

jobs, which significantly restricts the search space of MILP.

Considering the time scale of DLT jobs in our traces, we

set the scheduling cycle as 60 seconds. (4) GENIE [7] pro-

poses an offline prediction model to estimate the processing
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rate and response latency for diverse DL workloads. It en-

ables DLT jobs to run on various GPU resources in an elastic

manner and identifies the best placement for DLT jobs. It

prioritizes SLO jobs with the smallest laxity without con-

sidering best-effort jobs. We assign best-effort jobs with the

lowest priority.

Deep Learning scheduler: (5) Tiresias [16] measures the

GPU time of the received jobs, and adopts the Least At-

tained Service and Gittins Index algorithm to increase the

job throughput and decrease the average job completion

time. We implement it following the same system setting in

its released code. (6) Themis [34] proposes the finish time

fairness as a new metric to evaluate scheduling fairness. We

follow the same implementation in [38].

5 EVALUATION

We first validate the design of each system component and

identify the optimal parameters (Sec. 5.1 – 5.3). Then we

study the performance of the end-to-end system and com-

parisons with prior solutions (Sec. 5.4). Finally we present

our prototyping results on real systems (Sec. 5.5).

5.1 Profiler Evaluation

We mix the jobs from the Short and H_MIX2 workloads, and

deploy them on C96 to evaluate the Profiler.
First, we consider the impact of the Profiling cluster capac-

ity. Fig. 6(a) shows the profiling pending overhead (red line)

and wDMR (blue bars) of these jobs under different fixed

sizes of the Profiling cluster. We also show the results when

the dynamic scaling mechanism (Sec. 3.2.3) is adopted. We

observe that (1) if the cluster is too large, the wDMR of SLO

jobs will be increased, as the resources of the guaranteed

cluster is reduced. (2) If the cluster is too small, there are not

enough resources for profiling, and the profiling pending

overhead is increased. (3) The dynamic scaling mechanism

can perfectly balance such trade-off, giving the satisfactory

pending overhead (32 seconds) and lowest wDMR (5.0%).

Second, we evaluate our submission control mechanism

(Sec. 3.2.1). It limits the number of requested GPUs per user

below 24 within each interval 𝑇𝑝𝑟𝑜 𝑓 𝑖𝑙𝑒 . Fig. 6(b) shows the

distributions of the profiling pending time without and with

submission control respectively. We observe this mechanism

can effectively reduce the longest pending time from 2,105

seconds to 960 seconds. It enables the Profiler to respond

to the jobs promptly.

Third, our Profiler can effectively filter and complete

short-term jobs without scheduling them. Fig. 6(c) shows

the JCT of these jobs in the Profiling cluster with different

sizes as well as dynamic scaling. For comparisons, we also

show the ideal result when the SRTF algorithm is applied

(red dashed line)
5
. We see the average JCT is smaller with

more profiling resources. With dynamic scaling, the JCT is

slightly higher than the ideal one, which is still acceptable.

This concludes the Profiler can significantly benefit the

short-term jobs.

Fourth, the prediction accuracy of the Profiler can af-

fect the scheduling performance. We perform a sensitivity

analysis by perturbing the profiled job runtime with random

Gaussian noise. Fig. 6(d) shows the scheduling result for dif-

ferent workloads, where x-axis is the standard deviation of

the added noise and y-axis is the wDMR of SLO jobs. We

observe Chronus exhibits strong robustness when the noise

scale is smaller than 40%. This can be easily achieved by the

Profiler in practical scenarios.

5.2 Job Selector Evaluation

We first measure the impact of the SLO lease length on the

deadline enforcement. We run the H_MIX2 workload, and

measure the JCT of best-effort jobs and wDMR of SLO jobs,

as shown in Fig. 7(a). When the lease term is too short (<10

minutes), there will be more frequent preemption opera-

tions with large overhead, causing high wDMR for SLO jobs.

When the lease term is too long, wDMR is also increased

due to the restricted scheduling opportunities. A lease term

between 15 – 30 minutes gives the best results. Besides, the

SLO lease length does not affect the performance of best-

effort jobs when it is longer than 15 minutes. In the following

experiments, we will set the SLO lease length as 20 minutes.

Second, the MILP solver can effectively support the soft

deadlines of SLO jobs by maximizing the total reward value

(Eq. 1) and rejecting unguaranteed SLO jobs. Fig. 7(b) shows

the wDMR of the SLO jobs in two cases: (1) the MILP solver

tries to maximize the objective under the constraints. (2) The

MILP solver only finds a feasible solution to obey the con-

straints. We observe the consideration of the objective can

significantly reduce the wDMR, mainly for the improvement

of soft SLO jobs. Without this objective, the wDMR of soft

SLO jobs will be terribly affected. Fig. 7(c) shows the wDMR

of the unguaranteed SLO jobs rejected by the admission

control mechanism in various workloads. We observe that

wDMR is very high for these jobs, indicating this mechanism

can effectively identify the unguaranteed jobs which cannot

be completed before the deadlines.

Third, the latency of the MILP solver can affect the scal-

ability of Chronus. For a larger cluster with a higher job

submission rate, the MILP solver needs to take more time to

identify the solutions, which might decrease the scheduling

efficiency and incur larger pending overhead. We adopt the

5
This ideal result cannot be achieved in practice as the remaining time is

unknown during profiling.
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(a) Impact of Profiling cluster size (b) Impact of submission control (c) JCT of short-term jobs (d) Sensitivity analysis

Figure 6: Performance of the Profiler.

(a) Impact of the SLO lease length (b) Impact of the objective (c) Impact of admission control (d) Scabaility analysis

Figure 7: Performance of the Selector.

H_MIX2 workload, and adjust the number of jobs propor-

tional to the cluster capacity. Fig. 7(d) shows the correspond-

ing solver latency under different cluster and job scales. The

maximal latency from theMILP solver is less than 10 seconds,

which can be ignored compared to the duration of DLT jobs.

This suggests that Chronus can handle large-scale GPU

clusters and heavy workloads with high efficiency.

5.3 Allocator Evaluation

The Allocator adopts two placement strategies for different

types of jobs. They are mainly optimizing the consolidation-

hostile jobs. To show the impact of these jobs on the place-

ment strategies, we modify the GPU demands of some jobs in

H_MIX2 to get different ratios of consolidation-hostile jobs.

We set the threshold |𝑆 | as 100,000 in the implementation.

First, we check the consolidation placement for guaranteed

SLO jobs (Sec. 3.4.1). Fig. 8(a) shows the average JCT of best-

effort jobs (lines) and wDMR of SLO jobs (bars), without

and with the round-up technique respectively. We get two

observations. (1) The round-up technique can effectively

reduce the wDMR of SLO jobs. Without it, the Allocator
cannot find a consolidation solution for some guaranteed

SLO jobs, and has to put them in the pending state, which

can cause deadline violations. When round-up is applied

(Eq. 6), the MILP solver will request more compute nodes

to satisfy the consolidation principle for the selected SLO

jobs. Then the wDMR becomes smaller. (2) When the ratio of

consolidation-hostile jobs is higher, the benefit of round-up is

smaller. This is because more consolidation-hostile jobs can

cause more GPU fragmentation in the Guaranteed cluster.

This lowers the resource utilization and leads more jobs to

miss the deadlines. Round-up cannot mitigate this issue.

(a) Round-up technique (b) Local search

Figure 8: Performance of the Allocator.

Next, we explore the effectiveness of our proposed local

search algorithm (Sec. 3.4.2). Fig. 8(b) shows the wDMR of

SLO jobs (bars), and the average JCT of best-effort jobs
6

(lines). We consider three placement strategies for the best-

effort jobs: consolidation, quasi-consolidation, and local search.

We observe that local search beats the other two strategies in

reducing the JCT of best-effort jobs. More interestingly, we

find local search also reduces the wDMR of SLO jobs, even it

is used for placing jobs in the best-effort queue. The reason is

that round-up increases the GPU demands of consolidation-

hostile jobs. Hence, some of these jobs will be judged by the

admission control as unguaranteed SLO jobs, even they can

meet the deadlines with the actual GPUs without rounding

6
Normalized to the value under the consolidation policy
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up. They will be placed in the best-effort queue. With the ad-

vanced local search algorithm, these jobs satisfy the deadline

requirements in the Spot cluster, thus reducing the wDMR.

5.4 End-to-end Evaluation

SLOEnforcement. Fig. 9(a) shows the wDMR of our system

for the six workloads, and comparisons with other baseline

schedulers (Sec. 4.3). Chronus always gives the best results.

In contrast, DL schedulers, especially Yarn-CS, are really

poor in guaranteeing the deadlines, as they do not consider

SLO in their design.

Deadline-aware schedulers perform better than DL sched-

ulers. (1) For SLO workloads, GENIE outperforms 3Sigma

and EDF. However, they are still not as good as Chronus,

which utilizes the preemption feature. (2) For MIX1 work-

loads, EDF and 3Sigma achieve comparable performance as

Chronus, as they can sacrifice best-effort jobs to free more

GPUs for SLO jobs. (3) For MIX2 workloads, these deadline-

aware schedulers only consider the strict deadlines while

missing the opportunities of achieving better overall rewards.

In contrast,Chronus leverages soft deadlines to significantly

decrease the wDMR of SLO jobs.

Best-effort job performance. Fig. 9(b) shows the average

JCT of best-effort jobs, normalized to the value of Chronus.

We observe that Chronus still gives the best performance

compared to other six schedulers. It can beat DL schedulers

because Chronus can have enough GPU resources to reduce

the latency of best-effort jobs without compromising SLO

enforcement. Deadline-aware schedulers perform rather bad

for best-effort jobs, as they seriously sacrifice them to satisfy

the requirements of more SLO jobs.

Impact of the job density. Next, we measure the perfor-

mance of different scheduling systems with different job

densities in the cluster. We choose the H_MIX2 and P_MIX2

workloads. We scale down the job density to 80% by ran-

domly removing 20% DLT jobs. We also scale up the job

densities to 120%, 140% and 160% by randomly selecting cer-

tain numbers of jobs and inject them into the workloads [52].

Figs. 9(c) and 9(d) show the results of SLO enforcement in the

two workloads. We observe a higher job density can increase

the wDMR of all the schedulers. However, Chronus always

performs the best given a fixed density.

Figs. 9(e) and 9(f) demonstrate the average JCT of best-

effort jobs, normalized to that of Chronus. Similarly,Chronus

gives the lowest JCT given one job density and workload.

Compared to other deadline-aware schedulers, Chronus

frees enough GPU resources for best-effort jobs without sac-

rificing the enforcement of SLO jobs. Compared to other DL

schedulers, Chronus benefits from the runtime information

during profiling to better schedule the best-effort jobs.

5.5 Prototype Implementation and

Evaluation

To comprehensively validate the practicability of our de-

sign, we implement a prototype of Chronus on top of the

Kubernetes [2]. Our implementation consists of a scheduler,

controller and client-side watcher. (1) The client-side watcher

is responsible for monitoring the execution progress of DLT

jobs, receiving notifications of the checkpoint from the con-

troller, and making checkpoints when the lease expires. (2)

The controller notifies the scheduler when the lease of a DLT

job expires and triggers job checkpoint by communicating

with the watcher. It communicates with the MILP solver, an

open-source goop library [27], to make scheduling decisions.

(3) The scheduler receives the scheduling-related events and

information from the controller (e.g., lease renewal, esti-

mated remaining time), and manages the jobs (e.g., execution,

termination, preemption, assigning resources). The imple-

mentation of the scheduler and controller contains a total of

4,293 lines of Go code. The client-side watcher only covers

hundreds of lines of python code.

Our Chronus prototype can successfully schedule and

host general DLT jobs and models. To compare the results

from the trace-driven simulations and Kubernetes prototype,

we sample some DLT jobs from H_MIX2, and randomly

assign common DL models (VGG16, AlexNet, MobileNet,

InceptionNet, ResNet, GAN, Bert, RL) to them. We restrict

the number of requested GPUs in each job below 16, and set

the duration of these jobs between 5 minutes to 180 minutes.

The submission process lasts for ten hours. Fig. 10 shows

the wDMR of SLO jobs and average JCT of DLT jobs from

simulation and Kubernetes implementation. We consider

configurations (𝐺 [𝑛]/𝑇 [𝑚]) with different job densities and

cluster capacities: 𝐺 [𝑛] denotes the cluster has 𝑛 GPUs and

𝑇 [𝑚] denotes 𝑚 jobs are submitted per hour. For wDMR,

the gap between simulation and Kubernetes prototype is

small in consideration of real-world preemption overhead.

For average JCT, the gap between simulation and Kubernetes

is relatively larger when the GPU cluster is small. A possible

reason is that Chronus mainly allocates GPUs to SLO jobs

first. A small cluster has limited free GPUs for best-effort

jobs, which can enlarge the performance gap. However, the

difference is still acceptable and does not affect the conclu-

sions from simulations.

6 RELATEDWORKS

Deadline-aware scheduling.This classic problemwas thor-

oughly studied in the context of network communication

[6, 33]. Priority-based methods (e.g. Earliest Deadline First

[32]) and rate control methods (e.g. RCP [13]) were adopted

to satisfy the deadlines of network packets. Then researchers

explored deadline-aware scheduling of big data jobs in cloud

619



SoCC ’21, November 1–4, 2021, Seattle, WA, USA Wei Gao, Zhisheng Ye, Peng Sun, Yonggang Wen, and Tianwei Zhang

(a) wDMR (b) Average JCT (c) wDMR versus job density (H_MIX2)

(d) wDMR versus job density (P_MIX2) (e) Average JCT versus job density (H_MIX2) (f) Average JCT versus job density (P_MIX2)

Figure 9: End-to-end comparisons between different schedulers.

(a) wDMR (b) Average JCT

Figure 10: Comparisons between simulation and ku-

bernetes implementation.

computing. Some works [39, 48] modelled this scheduling

task as an MILP problem. However, these algorithms are not

tailored to the DLT jobs, and exhibit less effectiveness in

GPU cluster scheduling. For instance, these methods cannot

accurately and efficiently estimate the execution time of DLT

jobs. They do not consider the impacts of GPU affinity and

job preemption on the scheduling efficiency.

Recently, researchers started to focus on the SLO require-

ments of DLT jobs. HyperSched [30] maximizes the perfor-

mance of hyper-parameter optimization jobs to meet the

given deadlines. It cannot be applied to general DL tasks as

we do in this paper. GENIE [7] develops an offline runtime

estimation model to identify the best placement solutions

for DL jobs. However, it does not allow user-specified SLOs.

More importantly, these solutions do not consider the mix-

ture of SLO and best-effort jobs in real-world GPU clusters.

Different from these works, we provide a scheduling sys-

tem to satisfy the deadline requirements of SLO jobs and

maximize the performance of best-effort jobs. It can be read-

ily deployed in existing GPU clusters for general DLT jobs.

Job duration estimation. Job duration time is critical in-

formation for scheduling in datacenters. A variety of works

propose to leverage the historic data [23, 47] and task struc-

tures [36, 37, 50] to predict the runtime of big data analytic

jobs in an offline manner. For DLT jobs, several works [7, 14]

leverage the DL model information to predict the comple-

tion time. Unfortunately, such solutions are not applicable to

training jobs with unknown model types. Some works [16,

34] adopt online profiling to address this drawback.Chronus

also follows this strategy. We introduce several techniques to

enhance the profiling performance and efficiency over exist-

ing solutions, e.g., dynamical scaling of profiling resources.
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Deep learning schedulers. A variety of scheduling sys-

tems were designed to optimize the execution of DLT jobs in

GPU clusters from different perspectives. To maximize the

resource utilization, Gandiva [53] designs a primitive to sup-

port DLT job packing, sharing and migration. Antman [54]

introduces a fine-grained elastic mechanism to enable the

co-execution of multiple jobs on a shared GPU. To improve

the job performance, Tiresias [16] proposes a Discretized

Two-Dimensional LAS to reduce the job completion time.

Optimus [41] uses an online fitting model to predict the

model training convergence and then minimize the training

time. Pollux [42] dynamically adjusts the batch size and learn-

ing rate for each job to improve the cluster-wide throughput.

To maintain the fairness of resource allocation, Themis [34]

follows a finish-time fair manner to enable sharing incentive.

𝐺𝑎𝑛𝑑𝑖𝑣𝑎𝑓 𝑎𝑖𝑟 [4] leverages a novel automated trading scheme

to incentivize users to release GPUs for cluster efficiency

improvement and fairness guaranteeing. Unfortunately, they

are not very effective in guaranteeing SLO requirements.

This motivates us to design a new deadline-aware scheduler

specifically for DLT jobs.

7 DISCUSSIONS AND FUTUREWORKS

Extension to heterogeneous resources. In this paper, we

focus on homogeneous GPU clusters. Our system can be

easily extended to heterogeneous clusters. Consider a clus-

ter with various types of compute nodes and GPUs. For the

Selector, we can introduce a new binary variable to repre-

sent the kind of GPU resources, and embed it into the con-

straint and objective of MILP. The Profiler and Allocator
are also applicable to the new clusters. We will implement

Chronus on heterogeneous clusters in the future.

Extension to auto-scaling DLT jobs. In the auto-scaling

mechanism, a user specifies the range of GPUs for his DLT

job. To handle this, we can introduce multiple binary vari-

ables to denote the selection of every value in that range,

and adjust the constraint and objective of MILP optimization

subsequently. This will bring larger search costs due to the

increased search space.

Scheduling directed acyclic graph DLT jobs. A directed

acyclic graph (DAG) DLT job is a collection of multiple tasks

with high execution dependencies. Some tasks will be exe-

cuted in sequence and others in parallel. It will be costly for

our Profiler to estimate the runtime speed of each task:

more GPUs allow parallel execution of many tasks at the

cost of GPU resources, while fewer GPUs delay the progress

of a DAG DLT job. A possible solution is to combine offline

prediction and online profiling to balance this trade-off. For

the Selector, we can use binary variables to indicate which

tasks are executed in parallel, and design the corresponding

constraints and objective of the MILP solver. The Allocator

also needs to be redesigned to adapt to the DAG DLT jobs

based on the relationships between performance and GPU

affinity. We will consider this as another line of future work.

Handling rare cases in profiling. We make several as-

sumptions about our system in Sec 3.1. In reality, there can

be some rare cases that do not meet the assumptions. First,

when a job adopts the loss-convergence stopping criteria

instead of the fixed number of iterations, we can leverage

the loss curve fitting technique in [34, 41] to estimate job

runtime. Second, for some super-large models or model paral-

lelism jobs, we can ask the users to reserve enough resources

ahead of time for profiling.

Limitations of evaluations. In addition to the baseline

schedulers in our evaluation, there are also some sched-

uling systems designed for elastic training, e.g., Optimus

[41], Pollux [42]. We did not evaluate them as our traces do

not contain enough information for simulation. We believe

Chronus can outperform these elastic-aware DL schedulers

since they are not designed for deadline guarantee. Besides,

the elastic training techniques can also be easily integrated

into Chronus. In the future, we will collect the required in-

formation from the physical environment and perform more

extensive comparisons.

Reward function design. Our reward function has the

range of [1, 100]. The cluster operator has the flexibility

to adjust this range to adapt to the actual cluster environ-

ment. For instance, he can assign a larger reward value for

more expensive DLT jobs, which can further increase the

possibility of SLO guarantee.

8 CONCLUSION

This paper presents Chronus, a novel DLT scheduling sys-

tem to satisfy the SLO requirements and maximize the per-

formance of DLT jobs. We make innovations in the designs

of job profiling, selection and resource allocation to improve

the scheduling efficiency and effectiveness. Extensive simula-

tions indicate that Chronus outperforms six state-of-the-art

scheduling algorithms in reducing the deadline miss rate and

job completion time. We also implement Chronus on the Ku-

bernetes system in our production cluster, to demonstrate its

practicability and validate the fidelity of simulation results.

We expect our system can benefit existing GPU clusters in

managing time-constraint DLT jobs.
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