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Abstract—Modern GPU clusters are designed to support distributed Deep Learning jobs from multiple tenants concurrently. Each
tenant may have varied and dynamic resource demands. Unfortunately, existing GPU schedulers fail to thoroughly consider the fairness
among the tenants and jobs, which can result in unbalanced resource allocation and unfair user experience. In this paper, we present
an efficient solution to provide strong fairness while maintaining high scheduling effectiveness in multi-tenant GPU clusters. First, we
introduce a novel Long-Term GPU-time Fairness metric, which can comprehensively evaluate the fairness at both the tenant and job
levels, based on both the temporal and spatial impacts of resource allocation. Second, we design a new and practical GPU scheduler,
ASTRAEA, to enforce the desired fairness among tenants and jobs. Large-scale evaluations show that ASTRAEA can improve tenant
fairness by up to 9.42× compared to state-of-the-art schedulers, without sacrificing the average job completion time.
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1 INTRODUCTION

D EEP learning (DL) has been utilized in a wide range of
real-world applications, e.g., image recognition, natu-

ral language processing, recommendation systems [1]. State-
of-the-art DL models are trained from massive data samples,
involving a large amount of computations. It is a common
practice to leverage GPUs or other accelerators to speed
up the training process [2], [3]. To deal with the ever-
growing complexity of DL training (DLT) workloads and
increased demands for computation resources, enterprises
and institutes commonly set up large-scale GPU clusters.

A cluster is typically shared by multiple user groups (i.e.,
tenant), which can significantly improve resource utilization
and reduce operational costs [4], [5]. It can concurrently
serve a large number of jobs with different features. Ta-
ble 1 shows the running time distribution of DLT jobs
from two production GPU clusters operated by Microsoft
and SenseTime. We observe that there are long-term jobs
which take hours or days to complete. Besides, about 41%
(Philly) and 67% (Venus) of the DLT jobs can be completed
within 10 minutes. These short-term jobs generally adopt
the feedback-driven exploration method for the research
and debugging purposes [6], [7].

The mixed workloads of long-term and short-term jobs
call for fair resource allocation, and it is crucial to provide
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TABLE 1: Running time distributions of DLT jobs in two GPU
clusters: Philly from Microsoft and Venus from SenseTime.

Time < 10 min < 1 hour < 6 hour < 1 day < 6 day

Philly 40.8% 71.6% 88.5% 94.1% 98.5%
Venus 67.3% 83.3% 90.6% 96.2% 99.6%

sharing incentive in a shared cluster. Here sharing incentive
refers to the property that if N jobs share a cluster, then
each job should not have worse performance compared to
an independent cluster with 1/N of the resources [8]. On
one hand, long-term jobs should not monopolize the entire
cluster, which can significantly block the execution of short-
term jobs (a.k.a. head-of-line blocking [6], [7]). On the other
hand, arbitrarily prioritizing short-term jobs can cause star-
vation for long-term jobs. It is necessary to balance all these
types of jobs and satisfy every tenant. Unfortunately, most
of the existing DLT schedulers, e.g., Slurm [9], Kubernetes
[10], Yarn-CS [4], Tiresias [7], Gandiva [6], Hived [11] and
Pollux [12] ignore the fairness issue in GPU clusters, which
can result in severe discrimination of resource allocation
across DLT jobs. Gandivafair [13] targets the fairness of
GPU clusters. However, it mainly considers fair share of
GPU resources across tenants instead of DLT jobs.

This paper aims to design new scheduling solutions to
achieve fairness for DLT jobs in multi-tenant GPU clusters. Past
works have studied similar problems in the big-data cluster
environment. The mainstream mechanism is instantaneous
resource-allocation fairness, which can ensure instantaneous
fair allocations across big data jobs (e.g., map-reduce tasks)
by balancing the allocated resources among all the jobs in
real-time [4], [5], [14], [15], [16]. Unfortunately, it is difficult
to achieve instantaneous fairness for DLT jobs in GPU
clusters, due to their distinct characteristics. (1) Mainstream
DL frameworks [17], [18] require gang scheduling, i.e., all
the requested GPUs should be offered to the job in an all-
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or-nothing manner. Under this restriction, it is infeasible to
split partial resources from one job and give them to others
for instantaneous fairness. (2) DLT jobs have high GPU
affinity requirements. The performance of communication-
intensive DLT jobs exhibits high sensitivity to inter-GPU
topography. The instantaneous resource-allocation fairness
mechanism cannot take this factor into consideration. (3)
The preemption overhead of a DLT job is large for saving
and loading the model. Frequent preempting DLT jobs for
instantaneous fairness can cause huge performance penalty.

Hence, it is necessary to design a fairness solution dedi-
cated to DLT workloads. Themis [8] made such an attempt
by proposing the long-term finish-time fairness metric for DLT
jobs. It considers the gang scheduling and GPU affinity
requirements, and leverages a lease-based scheduling to
handle the preemption overhead of DLT jobs. At each
scheduling round, this mechanism tries to figure out the
optimal resource allocation strategy based on the remaining
time of each job. However, the metric only measures fairness
in terms of completion time without considering different
GPU requirements of DLT jobs. This can disincentive small
DLT jobs with smaller GPU requirements from using the
shared cluster. More seriously, a dishonest user may submit
DLT jobs with overclaimed GPU demands to intentionally
get higher throughputs with the same scheduling priority,
which could lead to more serious waste of cluster resources
and exacerbate the unfairness issue. We will give detailed
analysis about these mechanisms in Section 4.1.

Motivated by the above limitations, we present a novel
solution for fair GPU resource allocation across DLT work-
loads. We make the following two key contributions. First,
we design a new metric, Long-Term GPU-Time Fairness
(LTGF), to comprehensively characterize and evaluate the
fairness of DLT jobs. The comprehensiveness of this metric
is reflected from two aspects. (1) LTGF considers both the tem-
poral and spatial impacts of a resource allocation on the fairness of
DLT jobs. At a long-term scale, it quantifies the gap between
the amount of resources allocated to the job and the amount
of resources the job deserves to obtain under the sharing
incentive. This can give more reasonable assessment than
the finish-time fairness in Themis, which only considers the
temporal factor. (2) LTGF considers fairness at both the tenant
and job levels. At the tenant level, it distributes to different
tenants fair amounts of GPU resources, which are propor-
tional to their contributions (e.g., budget or GPU resources)
over a period of time. At the job level, it ensures that GPU
time is fairly allocated among concurrent DLT jobs in the
long term within a tenant. This can provide guaranteed
service for tenants, as well as high cluster utilization.

Second, we design ASTRAEA1, a practical and efficient
scheduling system to achieve fairness in GPU clusters. It
can simultaneously ensure fair share of GPU resources
among tenants as well as jobs without bringing noticeable
overhead for DLT jobs. Specifically, ASTRAEA adopts the
LTGF metric to evaluate fairness and identify the optimal
resource allocation decisions. It also utilizes a lease-based
scheduling scheme, which can efficiently preempt running
jobs to balance fairness and Job Completion Time (JCT).
Evaluation shows that ASTRAEA outperforms state-of-the-

1. ASTRAEA is the name of a Greek goddess for justice.

art fair schedulers, and improves tenant-level fairness by up
to 9.42× and job fairness by up to 10.3× without sacrificing
the average JCT.

2 BACKGROUND

2.1 Multi-Tenant GPU Cluster

It becomes popular to operate the GPU cluster in a multi-
tenant fashion. This can bring many benefits, such as reduc-
ing operational cost and improving resource utilization. A
shared GPU cluster is divided into multiple Virtual Clusters
(VCs), with each one assigned to a tenant. Based on a
tenant’s resource weight, its VC is associated with a static
or dynamic resource quota in terms of the number of GPUs
and other resources (e.g., CPU, RAM) [19]. Users of a tenant
can only submit DLT jobs to their corresponding VC. A
cluster scheduler is in charge of selecting DLT jobs from the
pending job pool and placing them on GPUs for execution.

2.2 Deep Learning Training

A Deep Learning training (DLT) job aims to determine
the optimal parameter values of a Deep Learning model
from training data. Users submit their jobs to the cluster.
Then a scheduler selects appropriate jobs from the pending
queue and places them to the demanded GPU resources
for execution. A running DLT job may be preempted by
other jobs. There are three possible final states for a DLT
job: (1) COMPLETED: a DLT job successfully executes all
the epochs of its training procedure. (2) CANCELED: users
may manually early stop the execution of a DLT job based
on the intermediate results. (3) FAILED: DLT jobs could be
terminated by force due to programming or hardware issues
[19]. DLT jobs have following features.

Iterative computing. A DLT job is executed in an itera-
tive fashion. At each iteration, a batch of training samples
are selected as the input of two steps of computation:
forward and backward propagation. A DLT job may con-
duct millions of iterations to achieve model convergence,
resulting in long running time (e.g., tens of days) [19], [20].
It is common to leverage hardware accelerators (e.g., GPU)
to improve the computation efficiency.

Feedback-driven exploration. Users usually perform
exploration tasks (e.g., searching different configurations
or hyper-parameters, selecting the optimal network struc-
tures) in a trial-and-error manner before obtaining the fi-
nal model [6], [7]. This exploration can be performed by
hyperparameter-tuning frameworks [21], [22]. During this
exploration process, poor-performing jobs will be killed in
advance based on the intermediate results.

Gang scheduling. Distributed DLT jobs could use mul-
tiple GPUs to train a single model using data-parallel
or model-parallel techniques. They usually require gang
scheduling: all the requested GPUs should be offered in an
all-or-nothing manner. While some new training solutions
[23] with elastic GPU resources have been proposed, they
are still at an early stage without broad deployment.

Placement sensitivity. Distributed training procedure
needs to exchange data between GPUs at every iteration. To
guarantee training performance, communication-sensitive
jobs require strict topology of allocated GPUs. For example,
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Fig. 1: Distribution of requested GPU resources.

a job with 8 GPUs should be placed on a single 8-GPU node
for the high performance of the nvlink-based communica-
tion. If this job is allocated with two nodes, the inter-node
communication could be the performance bottleneck [3].

2.3 DLT Job Scheduling

A scheduler is indispensable in a cluster to manage the
computing resources and schedule jobs. At runtime, the
scheduler continuously receives jobs submitted by users
with the explicit resource demands. Then it decides when
and where to run by selecting the proper jobs to satisfy the
scheduling objectives and placing them to the appropriate
servers for execution [24]. Different scheduling systems may
pursue various scheduling objectives, e.g., improving re-
source utilization [5], [20], [25], optimizing the performance
of workloads [26], [27], maximizing scheduling efficiency
[14], [28], guaranteeing service and user experience [29],
[30], etc. Different from the traditional big-data or HPC
workloads, DLT jobs exhibit unique characteristics (Section
2.2). This brings new challenges for GPU cluster scheduling,
and it is necessary to design dedicated schedulers for DLT
jobs, which will be discussed in Section 7.2.

3 A STUDY OF REAL-WORLD DLT JOB TRACE

In this section, we study Venus [20], a production DLT clus-
ter in SenseTime. Venus contains 133 GPU servers connected
by RDMA network. Each server is installed with 8 NVIDIA
Volta GPUs. The cluster is shared among 16 tenants. Each
tenant is allocated with a static number of GPUs. Venus uses
Slurm [9] as the scheduler. We collect and analyze 109734
GPU-based DLT jobs over a period of 6 months.

3.1 Characteristics of DLT Jobs in Shared Clusters

Unpredictable Training Time. In Venus, 52.2% of jobs are
successfully completed, 27.9% are canceled, and 19.9% fail.
Due to the high cancellation/failure ratio, it is difficult to
predict the running time of DLT jobs just based on the
remaining number of iterations. [31].

Various GPU Demands. Figure 1 shows the distribution
of DLT job in terms of requested GPU resources. About
52.5% of jobs use single GPU, 22.6% require 8 GPUs, and
10.3% need more than 8 GPUs. Jobs have high cancel-
lation/failure ratio in all the cases. We define the GPU
service time of a DLT job as the product of its GPU demand
and running time. Figure 2 shows such distribution. While
single-GPU jobs account for the largest proportion of all the
jobs, they only consume 4.7% of total GPU service time. The

Fig. 2: Distribution of DLT job GPU service time.

(a) CDF of running time. (b) CDF of GPU service time.

Fig. 3: CDF of DLT job running time and GPU service time.

major GPU service time is consumed by DLT jobs with no
less than 8 GPUs (85.7%).

Mixed Workload of Long-Term and Short-Term Jobs.
Table 1 demonstrates that DLT job running time varies from
minutes to days. Figure 3 further shows the cumulative
distributions of job running time and service time with
different resource demands. We observe that DLT job run-
ning time follows the long-tail distribution. For example,
for single-GPU jobs, 87.4% of jobs last for less than 1 hour,
while 2.2% spend more than 1 day. In addition, DLT jobs
with larger GPU demands tend to have longer running time.

Fig. 4: GPU utilization of two VCs.

Unbalanced Resource Demands. The GPU resource de-
mands of VCs in a shared DLT cluster are unbalanced over
time. Figure 4 gives the VC utilization of two tenant. On
June 15, Tenant-B has a high cluster GPU utilization of over
90%, but Tenant-A has an average utilization of less than
50%. On June 21, Tenant-A achieves near 100% utilization,
while Tenant-B only uses 60% of its GPUs.
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(a) CDF of job pending time. (b) CDF of job slowdown ra-
tio.

Fig. 5: CDF of DLT job pending time and slowdown ratio.

Implication #1: The unpredictability of training time, and
high variety in the GPU demands and running time signif-
icantly increase the difficulty of making optimal schedul-
ing decisions and allocating resources.

3.2 Issues of DLT Clusters Without Fairness

Venus uses FIFO (First-In-First-Out) to schedule jobs with-
out considering fair resource allocation across parallel DLT
jobs. Long-term jobs may monopolize the whole cluster or
VC, blocking the execution of pending jobs (a.k.a. head-of-
line blocking). As shown in Figure 5(a), a portion of jobs
have extremely long pending time. For example, 4.4% of
single-GPU jobs wait for over 30 minutes to be scheduled.
Jobs with 4 or more GPUs may have higher pending time.
Blocked DLT jobs (especially for short-term jobs) may suffer
from large execution slowdown ratio, which is defined as
(running time+pending time)/running time. As shown
in Figure 5(b), a certain number of jobs have large (> 5)
slowdown ratios.
Implication #2: Scheduling without considering fairness
could worsen the job pending situation and result in unfair
execution across different jobs.

4 LONG-TERM GPU-TIME FAIRNESS

In this section, we analyze the limitations of existing fairness
mechanisms, and then present our new fairness metric. This
will further inspire the design of our fair scheduler.

We consider two types of sharing incentive in this work.
Definition 1. (Sharing incentive for DLT jobs) Consider a M -
GPU cluster hosting N DLT jobs with the same weight. We say
there is sharing incentive for a job if its performance is no worse
than the situation where it runs in an independent cluster of
M/N GPUs.
Definition 2. (Sharing incentive for tenants) Consider aM -GPU
cluster shared by T tenants with the same weight. We say there is
sharing incentive for a tenant, if he could be allocated with at least
the same amount of GPU service time as an independent cluster
of M/T GPUs over a period of time, regardless of the workloads
of other tenants.

4.1 Analysis of Existing Fairness Mechanisms

We give some illustrative examples to demonstrate the
limitations of two common fairness mechanisms, as well as
the innovation and superiority of our metric.
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Fig. 6: Illustration of fair resource allocation. (a) Instantaneous
resource-allocation fairness. (b) Long-term finish-time fairness.
(c) Our proposed Long-term GPU-Time fairness.

4.1.1 Instantaneous Resource-allocation Fairness
This mechanism is widely adopted by existing big-data clus-
ters to achieve instantaneous fairness [4], [5], [14], [15], [16].
Consider there areN active jobs in the cluster for scheduling
at one instant t. Each job i receives ri(t) resources from
the scheduler. Then the goal of the instantaneous resource-
allocation fairness is to figure out the optimal policy with
the following objective:

maximize:min
i∈N

ri(t).

If a job does not fully utilize the allocated resources, these
excess resources will be redistributed to other jobs.

Figure 6(a) gives an example of this mechanism. Con-
sider a cluster of 6 CPUs with three active jobs. The sched-
uler should allocate these CPUs equally to each job regard-
less of their types or demands. Following this principle, the
scheduler is able to provide instantaneous fairness across all
the jobs at any time.

Unfortunately, instantaneous resource-allocation fair-
ness is hard to achieve for DLT jobs. As discussed in Section
1, DLT jobs require gang scheduling with high placement
sensitivity and preemption overhead. These characteristics
make it inflexible for the scheduler to adjust the resource
allocation instantaneously to guarantee fairness.

4.1.2 Long-term Finish-time Fairness.
This metric was proposed in [8] to address the fairness
issue for Hyper-Parameter Optimization (HPO) workloads.
It allocates resources to balance the finish time of each HPO
job. It is defined as ρi(t) = Ti(t)/(T

∗
i (t)·N), where Ti(t) and

T ∗i (t) is the estimated time to finish job i using the actual
allocated resources and the entire cluster, respectively. At
each scheduling round, the scheduler tries to identify the
optimal solution with the following objective:

minimize : max
i∈N

ρi(t).

Figure 6(b) gives an example when directly using this
metric to schedule DLT jobs. Three DLT jobs are submitted
to a 6-GPU cluster. Job1 requires 6 GPUs while Job2 and Job3
require 3 GPUs. Each of them needs 40 minutes to complete.
The duration of one scheduling round is 10 minutes. Guided
by this long-term finish-time fairness principle, these jobs
will be scheduled alternatively until their completion.

This metric only considers fairness in terms of comple-
tion time, while ignoring the amount of allocated resources.
In Figure 6(b), for each period of 20 minutes, Job1 gets 1/2
of the total GPU resources. In contrast, Job2 and Job3 only
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get 1/4 of the resources each. This cluster loses sharing in-
centive for these two jobs. Moreover, since jobs with higher
GPU demands can get more GPU service time, tenants may
overclaim excessive resources for their jobs to increase the
throughput, resulting in a waste of GPU resources.

A fair scheduler should consider the spatial information
(GPU demand) in addition to the temporal information
(running time) of DLT jobs. Using the above example, the
scheduler should give one round for Job1 and two rounds
for Job2 and Job3 (Figure 6(c)). Then equal resources are
allocated to each running job in any half hour. Our proposed
metric can achieve this fairness, as described below.

4.2 Long-Term GPU-time Fairness Definition

We propose a novel metric, Long-Term GPU-time Fairness
(LTGF) for DLT scheduling. In a single-tenant cluster, LTGF
achieves sharing incentive for DLT jobs. In a multi-tenant
cluster, LTGF also provides sharing incentive for tenants.

4.2.1 LTGF in Single-Tenant Clusters
Consider a single-tenant cluster of M GPUs shared by N
jobs from time t1 to t2. Let Demandjobi be the GPU demand
of job Ji, Alloc

job
i (t) be the amount of GPUs allocated to Ji

at time t. Due to the gang scheduling feature, we have:

Allocjobi (t) =

{
0, if Ji is not running
Demandjobi , if Ji is running

. (1)

Over a period time of [t1, t2], the accumulated GPU
service time allocated to Ji by the scheduler is

Alloc
job

i (t1, t2) =

∫ t2

t1

Allocjobi (t) dt. (2)

We use Active(Ji, t) to denote the state of Job Ji at time
t: pending or running jobs have Active(Ji, t) = 1 while
failed or completed jobs have Active(Ji, t) = 0. Given the
share weight W job

i of Ji, based on the max-min fairness, its
instantaneous fair number of allocated GPUs at time t is

FairSharejobi (t) =
M ×W job

i∑N
j=1(Active(Ji, t)×W job

j )
. (3)

Due to gang scheduling, Ji could not use more GPUs
than Demandjobi even if FairSharejobi (t) has a large value.
The fair GPU service time of Ji over [t1, t2] is

FairShare
job

i (t1, t2) =∫ t2

t1

min(Demandjobi , FairSharejobi (t)) dt.
(4)

The fairness degree ρjobi (t1, t2) for the job i from t1 to t2
is defined as

ρjobi (t1, t2) =
Alloc

job

i (t1, t2)

FairShare
job

i (t1, t2)
. (5)

ρjobi (t1, t2) ≥ 1 implies good long-term fairness in terms
of GPU service time for job Ji. In contrast, ρjobi (t1, t2) < 1

indicates unfairness since it violates the sharing incen-
tive. For example, we assume all the jobs have the same
weight and keep active over [t1, t2]. The GPU service time
that Ji receives in the shared cluster is ρjobi (t1, t2)(t2 −
t1)min(Demandjobi ,M/N). Considering an independent
cluster of M/N GPUs, the GPU service time that Ji acquires
is (t2 − t1)min(Demandjobi ,M/N). It is noted that Ji could
not run with M/N GPUs if Demandjobi > M/N due to
the gang scheduling. The performance of Ji in a shared
cluster is no worse than the situation where it runs in an
independent cluster of M/N GPUs, if ρjobi (t1, t2) ≥ 1.

4.2.2 LTGF in Multi-Tenant Clusters
Consider a cluster of M GPUs shared by T tenants. It is
divided into T VCs, with each one assigned to a tenant.
Each tenant j is associated with a weight W tenant

j . Then the
GPU quota of this tenant Quotaj is calculated as:

Quotaj =
M ×W tenant

j∑T
k=1(W

tenant
k )

. (6)

Let Nj be the number of jobs for tenant j, and
Demandjobi,j be the GPU demand of Ji,j from this tenant.
The requested amount of GPUs by tenant j at any time is

Demandtenantj =

Nj∑
i=1

(Active(Ji,j , t)×Demandjobi,j ). (7)

If Demandtenantj (t) < Quotaj(t), the tenant would not
use more GPUs than its resource demands. The fair number
of allocated GPUs for tenant tenant j at time t is

FairSharetenantj (t)

= min(Demandtenantj (t), Quotaj(t)).
(8)

The fair GPU service time that tenant j should receive
over a period of [t1, t2] is

FairShare
tenant

j (t1, t2) =

∫ t2

t1

FairSharetenantj (t) dt. (9)

As shown in Section 3, the total GPU demands of tenants
are unbalanced and varying over time. The actual amount
of GPUs allocated to tenant j at time t is

Alloctenantj (t) =

Nj∑
i=1

(Allocjobi,j (t)), (10)

where Allocjobi,j (t) denotes the amount of GPUs allocated to
job Ji,j at time t (Equation 1).

When Alloctenantj (t) < Quotaj , the tenant does not fully
utilize its resource quota due to insufficient workloads or
GPU resource fragmentation. In contrast, Alloctenantj (t) >
Quotaj means the tenant uses more resources than its quota
to improve the overall cluster utilization.

Over a period of [t1, t2], the actual GPU service time
allocated to tenant j by the scheduler is

Alloc
tenant

j (t1, t2) =

∫ t2

t1

Alloctenantj (t) dt. (11)
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The fairness degree ρtenantj (t1, t2) for tenant j from t1 to
t2 is defined as follows:

ρtenantj (t1, t2) =
Alloc

tenant

j (t1, t2)

FairShare
tenant

j (t1, t2)
. (12)

ρtenantj (t1, t2) ≥ 1 implies good long-term fairness in
terms of GPU service time for tenant Ti. It means the tenant
can use more or at least the same amount of GPU service
time than its fair share. In contrast, ρjobi (t1, t2) < 1 indicates
unfairness since the tenant receives less GPU service time
than a separate cluster of M/T GPUs.

We can also calculate the job fairness for Ji,j . Let W job
i,j

be the share weight of Ji,j in its corresponding VC. Its
instantaneous fair resource share at time t should be

FairSharejobi,j (t) =
FairSharetenantj (t)×W job

i,j∑Nj

i=1(Active(Ji,j , t)×W job
i,j )

. (13)

Its fair GPU service time over [t1, t2] should be

FairShare
job

i,j (t1, t2) =∫ t2

t1

min(Demandjobi,j , FairShare
job
i,j (t)) dt.

(14)

The job fairness degree ρjobi,j (t1, t2) for Ji,j from t1 to t2
is defined as follows:

ρjobi,j (t1, t2) =
Alloc

job

i,j (t1, t2)

FairShare
job

i,j (t1, t2)
. (15)

4.2.3 Application
Our proposed LTGF can provide guidance for realizing fair-
ness scheduling at both the tenant and job levels. To achieve
tenant-level fairness, we can use the max-min approach to
maximize the minimal ρtenantj in Equation 12:

maximize:min
j∈T

ρtenantj (t1, t2).

Job level fairness can also be guaranteed in a similar way
with the following objective:

maximize:min
i∈Nj

ρjobi,j (t1, t2).

Since these two parameters are used to regulate two differ-
ent levels of fairness separately, we do not unify them. On
one hand, our proposed two-phase scheduling algorithm
(Section 5.2) enables to achieve both job-level and tenant-
level fairness simultaneously. On the other hand, these two
parameters give the cluster administrators more flexibility
to focus on different types of fairness based on their de-
mands and situations.

Compared to the long-term finish-time fairness in
Themis, LTGF can provide more comprehensive assessment
for both temporal and spatial impacts at the tenant and job
levels. Besides, LTGF computes the fairness of a job or tenant
over a past period. In contrast, Themis needs to predict
the remaining time of each job to calculate the finish-time
fairness, which is not always accurate (Section 3.1), and can
affect the subsequent scheduling decisions.

5 A FAIR SCHEDULING SYSTEM

In this section, we introduce ASTRAEA, a fair DLT job sched-
uler for GPU clusters. ASTRAEA achieves our proposed
Long-Term GPU-time Fairness with two techniques. The
first one is a lease-based training scheme (Section 5.1). It
breaks a long-term job into a sequence of multiple sub-
jobs, which enables balancing jobs with different running
time, and rearranging job execution orders. The second
innovation is a two-phase scheduler based on LTGF across
tenants and jobs (Section 5.2). It maintains the two-level
fairness using a max-min approach.

Figure 7 shows the overview and workflow of ASTRAEA.
Different tenants submit jobs to their pending queues indi-
vidually ( 1 ), which are then processed by the two-phase
scheduler. The scheduler first selects tenants based on the
tenant-fairness metric ( 2 ), and then selects one job from
the tenant’s pending queue based on the job-fairness metric
( 3 ). The selected job will be allocated to the resource pool
according to the placement strategy ( 4 ). A job will return
to its pending queue for renewal when its lease is expired
( 5 ). Since job placement strategy is not included in our
contributions, we use a common consolidated job placement
strategy along with ASTRAEA, which deploys a job on as
few nodes as possible, following [6], [7], [19]. Other state-
of-the-art GPU placement algorithms determined by cluster
administrators can be integrated into ASTRAEA as well.

To summarize, we leverage the lease-based training
scheme for a more flexible arrangement of DLT jobs. We
utilize the two-phase fairness scheduling algorithm to make
scheduling decisions and achieve LTGF in a multi-tenant
cluster. Below we detail each technique.

5.1 Lease-based Training Scheme
To balance the jobs with different GPU demands and finish-
time, we design a novel lease-based DL training scheme.
As discussed in Section 2.2, a DLT job is usually a long
iterative process, causing inflexibility to the scheduler. Thus,
we propose to break a long training job into a series of
periods with a fixed length, namely lease terms. As shown in
Figure 8, at every scheduling round, each pending job needs
to request for a lease term. If this request is approved, the
job will also receive the demanded resources, and perform
the computation. At the end of this lease, the running job
needs to proactively make a checkpoint, and then submit
the renewal request for the next lease term. If the renewal
is successful, the job can continue the execution. Otherwise,
it will be preempted and its resources are released to other
jobs and tenants. Jobs that can be finished within one term
can release the resources immediately after the completion
without the need for lease renewal.

The lease-based training scheme is essential to the
scheduling process and is integrated with the two-phase
scheduling algorithm tightly. Based on the scheduling de-
cision made by the algorithm, the scheme is used to enforce
resource re-allocation between jobs. For the scheduler, at
every cycle, it needs to decide whether the lease renewal
request should be approved for each running job. If yes, the
scheduler will send a notification of “successful renewal ”
to the job so it can continue the execution. Otherwise, the
scheduler will suspend the job and reclaim the resources.
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Fig. 7: Overview of ASTRAEA.
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Fig. 8: Job execution under the lease-based training scheme.

In addition, the scheduler also needs to select pending jobs,
grant lease terms and resources to them, and resume their
computation. All these decisions are made by our two-phase
scheduling algorithm with the LTGF metric.

The concept of lease was adopted in various domains,
e.g., networking [32], cloud computing [33], computer ar-
chitecture [34], etc. Previous studies also leveraged similar
ideas for resource management and DLT job scheduling [6],
[7], [8]. Below we present some design details.

5.1.1 On-demand Checkpoint
The lease-based training scheme brings imperative resource
re-allocation and reclamation, introducing the need of on-
demand checkpoint for DLT jobs. A job needs to make a
checkpoint before the end of the lease term to avoid the
loss of progress. We make some changes in the user-side DL
library to achieve this function. A daemon is created when
a job starts to execute. When the job losses its lease term
and resources, the scheduler sends a POSIX signal to notify
the daemon of saving the current checkpoint. However, a
checkpoint has to be saved at the end of one iteration. There
may be not enough time for the job to finish the current
iteration before the resources are reclaimed. To solve this
issue, ASTRAEA implements a last store technique. At every
iteration, the job updates the model and other information
as a snapshot. Once receiving the preemption signal, the
daemon flushes the latest snapshot to the disk and waits for
the current iteration to complete. An updated snapshot is
made and stored if this iteration is finished before the job
preemption. Otherwise, the previous flushed snapshot will
be used for the future lease term.

5.1.2 Lease Renewal
There is minor modification over the conventional schedul-
ing algorithm to accommodate the lease-based training
scheme, along with other renewal mechanisms. At each
scheduling cycle, the scheduler needs to handle the re-
quests from both the running and pending jobs. ASTRAEA

processes these requests with the following steps. (1) The
scheduler treats all the jobs as in the pending state, and all
the resources as available. It selects the jobs to be scheduled
based on the fairness algorithm in Section 5.2. (2) For each
running job in the current lease term, if it is selected by
the scheduler, then its lease renewal is successful, and the
execution will continue in the next lease with the current
assigned resources. Otherwise, the job will be preempted
and the resources are reclaimed. (3) After all the resources
of the preempted jobs are freed, the scheduler performs
the placement policy (consolidated placement strategy in
our implementation) to allocate resources to the selected
pending jobs, and then resume their execution.

We introduce a coordinator to reconcile the job renewal.
This coordinator is responsible for not only triggering the
lease renewal and reclaiming the resources of preempted
jobs, but also resuming jobs with new assigned lease terms.
The resumed jobs will continue running from the last check-
point with the help of a network-attached storage system.

5.1.3 Lease Term Length

The length of a lease term is critical to determine the
scheduling efficiency and training performance. A short
lease term can increase the frequency of making checkpoints
and training overhead, and cause heavy loads for the sched-
uler. A long lease term fails to appropriately adjust the job
execution order, leading to poor fairness and JCT. Therefore,
how to set a proper lease term is a challenging problem,
as it depends on many configurations and behaviors of the
cluster and DLT jobs.

We can heuristically identify the proper length for the
target cluster based on its historical record. Specifically,
we collect a trace of past jobs, simulate the scheduling
behaviors, and measure the corresponding job fairness and
performance under different lease term lengths. Based on
the simulation results, we pick the optimal value that best
balances the fairness and performance for the cluster. Based
on the running time distribution of DLT jobs in Section 3, a
majority of jobs have short duration (nearly 70% jobs can
be finished within 10 minutes). Therefore, an appropriate
length ensures that most jobs can be completed within one
lease term. This significantly reduces the overhead. We can
periodically collect the traces and simulate the scheduler to
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adjust the configuration of term length adaptively. Detailed
results can be found in Section 6.2.

5.2 Two-Phase Fairness Scheduling Algorithm
To achieve the two-level LTGF defined in Section 4.2, we
design a novel two-phase scheduling algorithm, as shown in
Algorithm 1. The core of this algorithm is the AllocateJob
function, which is called in every scheduling round.

In this function, the scheduler first updates the fairness
metric for each tenant based on Equation 12 (line 2), and
for each job based on Equation 15 (line 3). These metrics are
computed from the beginning tbegin to the current moment
tnow. Then at Phase 1, the scheduler first maintains tenant-
fairness by selecting the tenant p∗ with the smallest fairness
index (line 5). If this tenant does not have any pending jobs,
the scheduler will skip it. Otherwise, it will continue with
Phase 2, which selects the job with the highest priority from
the tenant’s pending queue (line 7). If there are enough re-
sources and the job could be satisfied with the current place-
ment strategy, the scheduler will grant the lease term and
demanded GPUs to this selected job (line 10-15). Otherwise,
it will skip to the next tenant to prevent starvation. Finally,
it removes the job from its corresponding pending queue
(line 13) and updates the tenant level fairness metrics as
if the allocated job was running (line 14-15). The scheduler
repeats the above two phases until there are no pending jobs
or adequate resources.

Algorithm 1: Two-phase job scheduling.
Input: T tenants and N jobs, a cluster of M free GPUs.

1 Function AllocateJob
2 Update ρtenant for each tenant with Equation 12
3 Update ρjob for each job with Equation 15
4 while there exist pending jobs ∈ N with demand

r ≤M ∧ satisfy placement strategy do
// Phase 1: Tenant selection

5 p∗ = argminj∈T ρ
tenant
j (tbegin, tnow)

// Phase 2: Job selection
6 Jp∗ ←pending job list of tenant p∗

7 i∗ = SelectJob(Jp∗)
8 ri∗ ← GPU demand of job i∗

// Apply current placement strategy
9 Ai∗ ← Placement(M, i∗)

10 if ri∗ ≤M ∧ Ai∗ 6= ∅ then
// Allocate ri∗ resources to job.

11 Allocate(Ai∗ , i∗)
12 M =M − ri∗
13 Jp∗ = Jp∗ \ {i∗}

// Update the related metrics of
tenant p∗.

14 Alloc
tenant
j (t) = Alloc

tenant
j (t) + ri∗ ∗ tlease

15 Update ρtenant
j according to Equation 12.

16 else
// Continue with the rest

tenants.
17 T = T \ {p∗}

5.2.1 Job Selection
In Phase 2, the scheduler selects a job from the tenant’s
pending queue for scheduling. Algorithm 2 shows the pro-
cedure of this function. Basically, it calculates the reward

for each job based on the job-level fairness index. Then
it selects the job with the maximal reward (e.g., smallest
fairness index) as the candidate.

Note that this job selection process can be integrated
with other job-level prioritization approaches. For instance,
three types of jobs can be assigned with higher priority for
selection if not scarifying the fairness. (1) Some jobs have
ultra-short duration. If we prioritize the newly submitted
jobs, these short jobs can be scheduled and completed
promptly, which can reduce the job pending overhead. (2)
Some jobs have been executed for a large number of lease
terms, and more likely have a relatively long duration. Thus,
special attention to the lease renewal of these jobs can reduce
the total overhead caused by frequent preemption. (3) Users
may specify some important and urgent jobs that need to
meet certain deadlines. The scheduler can also increase the
reward of these jobs during selection, to ensure they are not
affected by lease expiration.

Algorithm 2: Select a candidate job from a job list.
Input: A job list J
Output: Selected job from J .

1 Function SelectJob
2 forall each job i in J do

// Calculate job reward.
3 i.reward = −ρjobi (tbegin, tnow)

4 i∗ = argmaxi∈J i.reward
5 return i∗

6 EVALUATION

6.1 Experimental Methodology

6.1.1 Implementation Details
We develop a trace-driven simulator to implement and
evaluate our fairness metric and ASTRAEA system. We adopt
several techniques to optimize the system implementation.
First, to select a tenant at Phase 1, we check the gap between
the resources a tenant can utilize in a scheduling round
and his weighted quota. Specifically, we slightly modify
Equation 8 for the tenant-level fairness as below:

FairSharetenantj (t) = Quotaj(t). (16)

This can better reveal the discrimination of utilized re-
sources with different resource weights of the tenants. The
corresponding fairness metric (Equation 12) illustrates the
weighted amount of resources allocated to tenant p during
[t1, t2]. This adjusted metric can motivate a tenant to lend
his unused resources to others and reclaim more than his
share when he has a burst demand in the future, which can
achieve the sharing incentive more effectively. Moreover,
although all tenants may remain fair on a long-time scale, it
is possible that a burst request from a tenant may prevent
him from submitting new jobs as long as he has a higher
LTGF metric. Therefore, this modification can compensate
for the problem that LTGF cannot be quickly adjusted on
short-time scales.

Second, to select a job at Phase 2, we consider more
job-level prioritization, as discussed in Section 5.2.1. We
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prioritize the newly submitted job, which can help short
jobs be scheduled and completed promptly. This achieves
overall better results considering the fact that short jobs take
the majority in GPU clusters.

6.1.2 Workloads
For the fidelity and generality of our simulation, we select
two real-world DLT job traces and use a two-week snapshot
of both two traces. The first one is Venus, collected from
a production cluster of 1064 GPUs in SenseTime [20]. This
trace contains 11304 jobs from 16 different tenants. The sec-
ond one is Philly from the Microsoft cluster [19], containing
44329 jobs from 15 VCs with 2490 GPUs. Note that the
Philly trace does not provide the size of each VC cluster, so
we make an assumption that the size of a VC is proportional
to the total number of GPUs requested by all the jobs in this
VC.

6.1.3 Simulation configurations
We set the lease term length as 900s, which can best balance
the cluster efficiency and fairness. Identification of this
value is detailed in Section 6.2. The scheduling interval is
set as 10s to provide balanced response time for newly
submitted jobs. These configurations are compatible with
the default settings of real-world round-based schedulers
[35]. Considering there exist CPU jobs in Venus and general
under-utilization for production clusters, we follow [36] to
scale down the cluster size to make usage more intensive:
we set 100 nodes for Venus and 210 nodes for Philly, with
each node comprised of 8 GPUs. We will fully investigate
the effectiveness of ASTRAEA under different cluster sizes
in Section 6.5. The duration and GPU demand of each
job is unmodified in the workload, regardless of whether
the submission time has been normalized. The cluster is
initialized with all the nodes available and starts to schedule
jobs submitted in the last scheduling round. We apply a
consolidated placement strategy in the simulation.

6.1.4 Metrics
We use the following metrics to quantify the effectiveness of
our proposed ASTRAEA.
• Fairness. We measure the LTGF fairness at both the

tenant and job levels (Section 4.2). For tenant-fairness,
we calculate ρtenant at multiple fixed intervals for each
tenant (Equation 12), as well as the distribution. For job-
fairness, we calculate ρjob for every job (Equation 15).

• Average slowdown. We use the average slowdown to
quantify the normalized pending situation, which is
calculated as the sum of pending time and running
time divided by the running time (Section 3.2). This can
represent users’ experience: a small average slowdown
indicates higher fairness and shorter waiting time, which
is beneficial especially for short-term jobs.

• Job Completion Time (JCT). We compute the average
JCT for the cluster efficiency. An efficient cluster has
better scheduling performance with lower average JCT.

6.1.5 Comparison with Other Baselines
We consider the following six baselines for comparisons.
The first four are mainstream DLT job schedulers for differ-
ent purposes (e.g., improving job performance and resource

utilization, handling heterogeneous environments). The last
two are state-of-the-art DLT schedulers specifically for job-
level fairness and tenant-level fairness, respectively.

• YARN-CS [4]: a static quota strategy is adopted to allo-
cate resources according to users’ weights.

• HiveD [11]: a dynamic quota is implemented in this
scheduler, allowing users to submit spot jobs to other
VCs with lower utilization.

• Allox [37]: this scheduler adopts the min-cost bipartite
matching to solve the placement problem with hetero-
geneous resources, and select tenants with the lowest
progress in each scheduling round.

• Tiresias-L [7]: it measures the aggregated GPU time
each job receives, and uses the Least Attained Service
to maintain the resource allocation.

• Themis [8]: it proposes the long-term finish-time fairness
as a new metric to evaluate fairness. We implement
this scheme by calculating the remaining iterations and
predicting throughput with non-shared situation, with a
reasonable estimation error rate.

• Gandivafair [13]: this scheduler utilizes a gang-aware
split stride, ticket-based mechanism to manage the
resources in heterogeneous systems, focusing on the
tenant-level fairness2.

6.2 Selection of Lease Term Length

Fairness and cluster efficiency highly depend on the lease
term length. We evaluate the impact of lease term lengths
on the scheduling system. Figure 9 shows the average JCT
(doted line) and preemption overhead (bars) with different
lease term lengths. We observe the preemption overhead
is relatively small, especially when the lease term becomes
longer. When we increase the lease term length, the JCT
is first decreased, as more jobs can be completed within
one term without being preempted, and the frequency of
job switching is reduced with smaller overhead. However,
when the lease term becomes longer, the JCT also becomes
larger because jobs have fewer chances to be adjusted.
We can find a length that achieves strong fairness while
not sacrificing the job performance. Figure 9 also shows
the relationship between the job-level fairness and lease
term length. We observe that a longer term can reduce the
fairness, as the frequency of job execution rearrangement is
reduced either, making it less efficient to adjust the fairness
via scheduling. Based on the above analysis, we select a
proper length as 900s from our historical trace considering
both fairness and efficiency, because it has similar perfor-
mance while satisfactory fairness compared with the most
efficient length (1200s). In practice, the lease term length
could be adjusted by cluster administrators. We will use
this configuration for the following evacuations. Scheduler
designers can identify the lease term length for their clusters
and jobs similarly.

2. Gandivafair also introduced an automated trading mechanism to
handle GPU heterogeneity and time sharing. This is not the focus of
this paper and will not be included in the evaluation. This mechanism
can be integrated with ASTRAEA as well.
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Fig. 9: Fairness affected by different lease terms.

6.3 Fairness Comparisons
Figure 10 shows the cumulative distribution of job-level
fairness under different schedulers. We observe more jobs
maintain higher fairness with ASTRAEA than the other
schedulers. If we treat jobs with fairness metric smaller
than 0.95 as sharing loss jobs, then ASTRAEA only produces
7.1% sharing loss jobs in Venus. In contrast, Themis and
YARN-CS schedulers give 19.7% and 73.6% sharing loss jobs,
2.8× and 10.3× of ASTRAEA. ASTRAEA exhibits even higher
advantage in Philly, which has more uneven distributions of
resources and jobs among tenants.

(a) Venus trace (b) Philly trace

Fig. 10: Cumulative distributions of job-level fairness.

Figures 11 shows the tenant-level fairness metrics with
different schedulers for the Venus trace. The x-axis in each
figure denotes tenants, and y-axis shows the distribution
of tenant-level fairness metric for each tenant over many
periods. A fair scheduler should maintain a higher metric
all the time. We observe that ASTRAEA can guarantee most
tenants have the fairness metric larger than or equal to
1. The other schedulers give relatively worse tenant-level
fairness, indicating they fail to meet the resource-as-you-
contribute requirement and sharing incentive. Quantitatively,
we calculate the ratio of cases whose metric value is smaller
than 1 as the indicator that the tenant is experiencing
sharing loss. ASTRAEA gives such an unfairness ratio of
5.2%. For the other schedulers, the best one is Allox (6.9%),
similar with Gandivafair (8.0%), and the worst are Tiresias-
L (49.0%) and YARN-CS (44.6%). ASTRAEA outperforms
these schedulers by 1.3× to 9.42×. Similar conclusions can
be drawn from the results for Philly trace.

6.4 Cluster Efficiency Comparisons
We show how effective our scheduler is in mitigating the
queuing congestion and reducing the average JCT in the

Fig. 11: Distributions of tenant-level fairness in Venus.

cluster. Figure 12 shows the cumulative distributions of
average slowdown. We observe that ASTRAEA can achieve
the least pending overhead compared to other schedulers,
indicating that it can provide prompt responses to short-
term jobs and reduce the waiting time of long-term jobs.
A very small portion of jobs suffer from long pending
overhead, because they have very short running time (e.g.,
5 seconds) compared to one scheduling round. A shorter
scheduling round can decrease these jobs’ pending time at
the cost of larger scheduling overhead.

Figure 13 shows the average JCT of each scheduler. The
fairness enforcement in ASTRAEA can ensure work con-
servation for short-time jobs and reduce the pending time
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for long-time jobs. It also enables the flexible adjustment
of tenant quota. Due to these mechanisms, ASTRAEA has
smaller average JCT compared to other schedulers.

Similar as other preemption-based schedulers, ASTRAEA
introduces extra overhead when rearranging the job execu-
tion order. This overhead can be divided into two compo-
nents: making checkpoints, and cold-start job. Checkpoints
are made for every lease expiration in case of preemption,
while cold start occurs only when the job lease renewal
fails. Previous work has shown that cold start dominates
the job preemption overhead [7]. Our lease-based training
scheme enables the job to renew its lease and continue the
execution without the cold start, which can improve the
JCT. In general, this scheme only brings approximately 0.8%
overhead to the average JCT with a lease term length of 900s
(Figure 9) in the Venus trace, which is negligible.

(a) Venus trace (b) Philly trace

Fig. 12: Cumulative distribution of average slowdown.

(a) Venus trace (b) Philly trace

Fig. 13: Average JCT for different schedulers.

6.5 Impact of Cluster Sizes

The cluster loads can also affect the effectiveness of AS-
TRAEA and other scheduling algorithms. We quantitatively
show the impact of cluster sizes on the average JCT and ratio
of sharing loss jobs with a fairness metric< 0.95. We compare
ASTRAEA with Tiresias-L, which outperforms other baseline
methods according to our evaluations in previous sections.
Figures 14(a) and 14(b) give the comparison results with
different cluster sizes (i.e., numbers of GPU nodes). We
observe that ASTRAEA always beats Tiresias-L for both
cluster efficiency and fairness, regardless of the cluster size.
In addition, both ASTRAEA and Tiresias-L exhibit more ad-
vantages when the cluster becomes larger. This is because a

larger cluster with more available resources can satisfy more
jobs with reduced pending time, and these idle resources
can be better utilized to achieve fairness for various jobs.

(a) Average JCT (b) Job-level fairness

Fig. 14: Impact of cluster sizes on ASTRAEA and Tiresias-L.

7 RELATED WORKS

7.1 Fairness Metrics

We review and analyze the fairness metrics for conventional
CPU workload or DLT jobs in prior works. Some metrics
consider the relative job performance (e.g. job execution
time) between the shared and independent systems [8], [14].
Some methods calculate the benefit gap between different
tenants: a smaller gap indicates a fairer scheduler [38], [39].
Some methods utilize queuing theory to consider the job
experience in the pending queue [40], [41]. A variety of
works also proposed fairness solutions for OS processes
[13], [42], [43], [44] or distributed workload scheduling [45],
[46], [47], [48]. They cannot be applied to DLT job scheduling
due to the unique job characteristics.

7.2 DLT Job Management

Over the past years, researchers have designed a quantity of
scheduling algorithms and systems to optimize the execu-
tion of DLT jobs in GPU clusters from different perspectives.
(1) Some works designed schedulers to maximize the cluster
utilization [6], [12], [19], [49], [50]. Particularly, GPU sharing
across jobs is a facilitating mechanism [51], [52] to improve
GPU utilization, which is adopted in these works. (2) Some
works aim to minimize the average JCT of DLT jobs [7],
[31], [37], [53], [54]. (3) New schedulers were introduced to
optimize the job performance [6], [7], [8], [11], [13], [19],
[31], [37], [55]. Different from those works, our goal is to
enhance both the job-level and tenant-level fairness while
maintaining the job performance.

8 CONCLUSION

In this paper, we present a novel study about resource
allocation fairness for DLT jobs in GPU clusters. We per-
form a quantitative analysis of a real-world job trace from
a production cluster in SenseTime, to uncover the severe
fairness problem in DLT scheduling. To mitigate this issue,
we propose a new yet practical metric, LTGF, to accurately
measure the fairness at both the job and tenant levels , with-
out prediction of job remaining time and future throughput.
We further design ASTRAEA, a new and efficient scheduler
with a two-phased scheduling algorithm based on LTGF to



12

enforce fairness. We evaluate ASTRAEA via large-scale sim-
ulations on real-world cluster traces. Experimental results
show that ASTRAEA can guarantee stronger fairness without
sacrificing the job performance or cluster utilization, com-
pared to other state-of-the-art schedulers.
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